6 (0 APPLICATIONS OF INTEGRATION

6.1 Areas bhetween Curves

=4

1. A= (yT—yB)da::/4[(Sw_xz)_z]dz:/()4(4x—:c2)dm

3= @) 0=

2 A=/02<\/m—%+1>dz: [%(m+2)3/2 ]
= [3@** ~m3| - 222 ~m1] = ¥ ~1n3 - §v2

3A= / (zr —zL)dy = /1[ey—(y2—2)]dy

-1

:/ (¥ —y*+2)dy = [ — 3" + 2], (el—§+2)—(e*1+§—2):e—l+—
-1

3
4. A= / (2y— ) - (v —4y)}dy:/(—2y2+6y)dy
0

=[-2°+3y ]0:(—18+27)—0:9

5. A= / —(@+1)]de

—(x+1)

x=-1

/2
6. A :/ (e° —sinz)dx

= [¢® + cosz|]/?
= (e2+0) - (1+1) 1/ =3

=e/? -2
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1. The curves intersect whenz =22 = 22 —2=0 <« z(z—1)=0 & z=0,1.

1
A:/(m—mz)da: Y
0

[lxz _ %:c3]; y=\xu{, (1 n

Sy =x

2
2

(S

A= =
=

0 i 2 X

3+z z?

1.

b
Il
B_.
=N
|
8
<
QU
8

Wi
8

W=
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z=¥z = =z = 2*-z=0 = r(z?-1)=0 = z(z+1)(z-1)
z=-1,0,0rl,s0

:0 =
1 . 1 |
= \%—$|dm=/ (I—\s/g)dxﬁL/ (%—m)da:=2/ (zl/s_g;)dm [by symmetry]
-1 ~1 0 0
1
4/3 )
:2[%1/ _%m}ozg(%_%)_%
v
1
y=Yid g MV
=+

(-L=0

13.12—22=22-6 & 22°=18 & z2=9 & z*=43 0

A/ [(12 - 2?) (z2—6)]da:=2/3

(18 — 22®) dz  [by symmetry]
0

=218z — 2z ] =2[(54 — 18) — 0] = 2(36) = 72

Yy

(12— x%) — (x*—6)

L /
y ) Jkx
(0,—6)

BWrP-z=3c = 2°—42=0 = z@*-4)=0 = z(z+2)(z—-2)=0 = z=0,-20r2
By symmetry,

A /-2|3:n—(z3—w)|dz=2/02 [Bz—(x —x)]dw—2/02(4a:—x3)dm

:2[2w2 1 4]3
=2(8-4)=8

zCL'

/

3x—(x*—x)
/

Ax
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B.2=yz = L=z = 2®-42=0 = 2(z-4)=0 = z=00rd so
4 9 4

A=) (Va-a)da+ [ (Jo - vE)de = [30°/2 — 302+ [10® - 2097]

d
=[(2-4)—0) +[(8 -18) — (4—18)] =81 1 32 _95_ 50

y

HERE

Ax

Ford<x<9

16. A= [2|(8—2%) —2?|do =2 [} |8 — 22%|de = 2 [ (8 — 22°) dz + 2 [* (2% — 8) du
= 2[8z — 22°]7 + 2[22® — 8z]3 = 2[(16 — L&) — 0] + 2[(18 — 24) — (1 — 16)]

32 _ 64 __ 92
=32-24+20-2=5-%-2

y=x!

(=3.9) (3.9)

(-2.4)

Hﬂj 0 VHH
y=8-x2

17.2°=1-y & 2°+y-1=0 & (2-1y+1)=0 & y=1Llor—1soz=1or2and
A=Ay -2 dy = [P (1-y -2y dy = [y y* - 2

y3]1/2
T P R S

-1
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1842+22=12 & (z+6)(z2—-2)=0 & z=-6orz=2s0y=—-6ory=2and

2
A:/ [(~1y®+3) —y)dy= [~v’ — 207 +3y) = (-2-2+6)—(18-18-18) =22 - § = .
-6

(1.1)

—1,-1

21. Notice that cosz = sin2z = 2sinzcosz < y y/: cos x

2sinzcosz —cosz =0 < cosz(2sinz—1)=0 <&

2sinz =1lorcosz =0 <& zz%org.

A= fOW/G (cosz — sin 2z) dx + f:/; (sin 2z — cosz) dx

/6
0

/2
/6

CAE]
2 |
=

= [sinz + § cos2z];"" + [} cos 2z — sinz]
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22, sinz = sin 2z = 2sin z cosz when sinz = 0 and when cos z = %;

that is, when z = 0 or 3. Y J=sin 2¢
A= f0”/3 (sin2z — sinz) dz + j://az (sinz — sin 2z) dz ’
= [~%cos2m+005m]g/3+ [% cos2x~cosx]:;§
= [4CD+H - (44 [

23. From the graph, we see that the curves intersect at x = 0, & = 3-and z = 7. By symmetry,

i /2 /2
A:/ cosx—(l—z—m) d$:2/ [cosw—<1—§>]dw:2/ (cosar—1+2—x)dx
0 ™ 0 T 0 ™

=2fsme 2+ 320 =2f(1- 542 F) 0] =201 -5+ 9) —2- 5

ISIE]

0
y

(0.1)

y=cosx
( ’0) i@% cosx—(l—%)

Ax

7113

2 1.3 2
¢ — 3T +2w]0

—
|
(V]
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25. The curves intersect when 22 = m o i+’ =2 o *+12-2=0 &

(22+2)(z*-1)=0 & =1 & z==I



=2[2tan"'z — %ms]; —2(2- 7 - 1)

26. A = fol [sinTz — (® —z)] do + ff [((E2 —z) —sinnz] dz

= [—% cosTz — 3z + %wz]é + [%m?’ — 122+ 1 coswx]f
SRR (D HE2e ) (i

y=sin mx

21. An equation of the line through (0,0) and (2,1) is y = %z: through (0,
and (—1,6) is y = —6z; through (2,1) and (—1,6) isy = —Sz + 2.

A= [ (52 +3) = (-62)] do+ [F [(-F2 + F) — 52] da
de+ 2 (—8z+18)da

)
=32 @+ de+ 3 [ (~3o+1) deo

BA=[7[(~2z+5) - (-Tz+5)]dv+ [} [(—2z+5) — (z — )]

= 02 %zdw + f; (—%a: + 9) dz

I

[352°]5 + [~ + 9]

(Z-0)+ (4§ +45) - (% +18) =

SECTION 6.1

0)

dx

AREAS BETWEEN CURVES O 501

(x* — x) —sin 7rx
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1
8 A= [ [|2°-z|de

-1

1
= 2/ (z—2%) dz  [bysymmetry]
0

30. The curves intersect when vz +2 =2 = z2+2=2°> = 2°—-z-2=0 =

(z—=2)(z+1)=0 = =z=—1or2. [—1isextraneous]

A= [V +2-z|ds y y
4.4
=l (Vz+2-z)dz+ [} (¢~ vz +2)de
:[%(m+2)3/2_%x2]:+[1x2_‘(x+2)3/2]2 el g
:(?—2)—(2(2\/5)~0)+(8—3(6\/6))—(2_-13.6) y=vx+2 ’
_4+2_é\/‘ 46 = ___4\/- (=2.0) 0 x
y=x

3. Let f(z) = 6032(774_1”) —Sin2(%) and Az = 1%
The shaded area is given by
A= fol f(z)dz =~ M,y
=il/G) +/R) + 1)+ f()]
~ 0.6407

32. The curves intersect when /16 — 23 =z =
16-22=2> = 2°=16 = 2°=8 = z=2
Let f(z) = V16 — 23 — z and Az = 20,

The shaded area is given by
A= [? f(z)dz ~ My
=:/Q) +F3) +£(3) +£(3)]

~ 2.8144
33. 2 From the graph, we see that the curves intersect at ¢ = +a ~ +1.02, with
2cosz > 2 on (—a, a). So the area of the region bounded by the
™Sy=2cos x curves is
— 42
e A= [* (2cosz —a®)dz =2 [ (2cosz — 2*) dz
-12 5 1.2 = 2[2 sinz — %xa]g ~ 2.70



34.

35.

36.

37.
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3 From the graph, we see that the curves intersect at z = 0 and at
« = a~ 1.17, with 3z — 23 > z* on (0, a). So the area of the region
y=3x—x bounded by the curves is
r=x A= Jo (o =) — o*] do = [0~ 4a*  a%];
-0l )13 ~1.15
—0.35

1 From the graph, we see that the curves intersect at z = +a ~ £0.86.

y = xcos(x?) So the area of the region bounded by the curves is

A= 2f0'1 [xcos(xQ) _ x3] dr = 2 [% Sin(zz) _ %934]

y=x ~0.40

From the graph, we see that the curves intersect at z = a =~ —1.32

( 7 and z = b =~ 0.54, with 2 — 22 > €” on (a, b). So the area of the

y=e region bounded by the curves is

A=[l[2-e) e do = [ — 1a® -]’
=~ 1.45

-2 2
\ J

As the figure illustrates, the curves y = x and y = z° — 622 + 4z enclose a four-part region symmetric about the

origin (since z° — 6z° + 4z and z are odd functions of z). The curves intersect at values of z where

z° — 62° + 4z = z; that is, where z(z* — 622 -+ 3) = 0. That happens at z = 0 and where

6+ /36 — 12 .
z2:—26— :3:&\/6;thatls.atz=—\/3—1-\/_.—\/3—\/6_3.0,\/3—\/(_3,and\/3+\/§,
The exact area is

/\/3+_\/6

0

V3+v6
2 ’(m5—6a:3+4w)—w|dw:2/ |25—6z3+3zldm

0

=V 3 Vare 3
=2/ z° —6z" +3z) d +2/ —z” +6z” —3x)d
; ( z z) dz (—z T z) dz

3-v6

B 12v6 -9

=x—6x>+ 4x
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38. The inequality > 2y? describes the region that lies on. or to the right of, ’
the parabola z = 2y®. The inequality z < 1 — |y| describes the region y=I-x x=2y"
that lies on, or to the left of, the curve z =1 — |y| = { Ly ify= 04 ok
14y ify<o0 *
So the given region is the shaded region that lies between the curves. y=x /
The graphs of z = 1 — y and ¢ = 2y intersect when 1 —y = 2y?

39.

Q.

42,

2°+y—1=0 & (-1)(y+1)=0 = y=13(fory>0).
By symmetry,

1/2
A=2 [Tl n - way =230 - 3+l =2 - 1) -0 = 2() = &

1 second = 3600 hour, s0 10 s = 360 h. With the given data, we can take n = 5 to use the Midpoint Rule.

_1/360-0 _ 1
At = ~=5— = 1355 50

. 360 1/360 1/360
distance geity — distance cheis = fo/ vk dt — 0/ vodt = o/ (vk

—ve)dt
~ Ms = 1555 [(vk — vo)(1) + (vk —vc)(3) + (vk — vc)(5)
+ (vk —ve)(7) + (vk —ve)(9)]
= -1 [(22— 20) + (52— 46) + (71 — 62) + (86 — 75) + (98 — 86)]

= a2+ 6+9+11+12) = 355 (40) = + mile, or 1173 feet

. If z = distance from left end of pool and w = w(z) = width at z, then the Midpoint Rule with n = 4 and

b— 8-2—-0 .

Az = — 2= —— = 4gives Area = [ wdz ~ 4(6.2 + 6.8+ 5.0 +4.8) = 4(22.8) = 91.2m”.

We know that the area under curve A betweent = O and t = z is [ va(t) dt = sa(z), where v4(t) is the velocity

of car A and s is its displacement. Similarly, the area under curve B betweent = 0 and ¢ = z is

foz vp(t)dt = sB(x).

(a) After one minute, the area under curve A is greater than the area under curve B. So car A is ahead after one
minute.

(b) The area of the shaded region has numerical value s 4(1) — sp(1), which is the distance by which A is ahead of
B after 1 minute.

(c) After two minutes, car B is traveling faster than car A and has gained some ground, but the area under curve A
fromt = 0 to ¢ = 2 is still greater than the corresponding area for curve B, so car A is still ahead.

(d) From the graph, it appears that the area between curves A and B for 0 < ¢ < 1 (when car A is going faster),
which corresponds to the distance by which car A is ahead, seems to be about 3 squares. Therefore, the cars
will be side by side at the time x where the area between the curves for 1 < t < = (when car B is going faster)
is the same as the area for 0 < ¢ < 1. From the graph, it appears that this time is z ~ 2.2. So the cars are side
by side when ¢ ~ 2.2 minutes.

The area under R’ (z) from & = 50 to z = 100 represents the change in revenue, and the area under C’(z) from
x = 50 to z = 100 represents the change in cost. The shaded region represents the difference between these two
values: that is, the increase in profit as the production level increases from 50 units to 100 units. We use the
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Midpoint Rule with n = 5 and Az = 10:
Ms = Az{[R'(55) — C'(55)] + [R'(65) — C'(65)] + [R'(75) — C'(75)]
+ [R'(85) — C'(85)] + [R'(95) — C"(95)]}
~10(2.40 — 0.85 4 2.20 — 0.90 + 2.00 — 1.00 +1.80 — 1.10 + 1.70 — 1.20)
=10(5.05) = 50.5 thousand dollars

Using M; would give us 50(2 — 1) = 50 thousand dollars.

43. y=—xJx+3 To graph this function, we must first express it as a combination of explicit
\ 25
N functions of y; namely, y = +z /z + 3. We can see from the graph that

the loop extends from 2 = —3 to z = 0, and that by symmetry, the area
we seek is just twice the area under the top half of the curve on this

—33 15 interval, the equation of the top half being y = —xz v/z + 3. So the area is
A= 2f33 (—z vz +3) dz. We substitute u = z + 3, so du = d and

/ ) the limits change to 0 and 3, and we get

A= =2 [7l(w=3)Valdu = -2 7 (u¥/? - 3u1/2) du

2] [y (545) - 2(3B)] - 25

We start by finding the equation of the tangent line to y = 2 at the
point (1,1): y' = 2z, so the slope of the tangent is 2(1) = 2, and its
equationis y — 1 = 2(z — 1), or y = 2z — 1. We would need two
integrals to integrate with respect to z, but only one to integrate with
respect to y.

+1-

win

NS,
Sl

45,

By the symmetry of the problem, we consider only the first quadrant,

wherey =22 = z= VY. We are looking for a number b such

b 4 b 4
that o Vidy = i vidy = 3y = 3[] =
b3/2 = 43/2 _ p3/2 = w3/2_8 = p3/2_ 4 =
b =42/ ~ 252,

a 4 a 4
46. (a) Wewanttochooseasothat/ idar:/ ida: = -t = -1 = —1-}-1:—1 +1
, z? . T2 z ], z |, a 4 a

- 5.2 4 .8
4 a 5
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47.

49,

(b) The area under the curve y = 1 /:1:2 fromz =1tox =41is % [take a = 4 in the first integral in part (a)]. Now

the line y = b must intersect the curve = = 1/,/y and not the line x = 4, since the area under the line y = 1/42

from z = 1 to z = 4 is only -, which is less than half of §. We want to choose b so that the upper area in the

. . 1
diagram is half of the total area under the curve y = — fromz = 1 to z = 4. This implies that
x

Bvi-Ddy=3-3 = [2vi-u,=3 =
1—2\/5-#1):% = b—2\/l—)+g:0.Lettingc:\/5,weget
?—2+2=0 = 8 —16c+5=0. Thus.
czmzli%@.Butczx/l—)<l = czl—@ =

16

b=c?=1+2— % = 1(11 - 4/6) ~ 0.1503.
We first assume that ¢ > 0. since ¢ can be replaced by —c in both equations without changing the graphs, and if
¢ = 0 the curves do not enclose a region. We see from the graph that the enclosed area A lies between x = —c and

z = c, and by symmetry, it is equal to four times the area in the first quadrant.
The enclosed area is
— A (2 2 _Ala2 1,3]¢
A=4[ (c’~= ) dz =4[’z — 32°]

3

:4(03 - %c3) = 4(%63) =8¢

wloo

SoA=576 & 5P =576 & =216 & c=V216=6

Note that ¢ = —6 is another solution, since the graphs are the same.

It appears from the diagram that the curves y = cos z and y = cos(z — ¢)
intersect halfway between 0 and c, namely, when & = c/2. We can verify that

this is indeed true by noting that cos(c/2 — ¢) = cos(—¢/2) = cos(c/2).

The point where cos(z — c) crosses the z-axis is ¢ = § + c. So we require

,.qu
o

™

that foc/z [cosz — cos(z — c)] dz = — f"/2+c cos(z — c) dz (the negative

\/

sign on the RHS is needed since the second area is beneath the z-axis) <

[sinz — sin (z — O)S? = —[sin(z — )]} o4 =
[sin(c/2) — sin(—c/2)] — [~ sin(—¢)] = —sin(r —¢) + sin[(2+c¢)—¢] &
2sin(c/2) — sinc = —sinc+ 1. [Here we have used the oddness of the sine function, and the fact that

™

sin(m — ¢) = sinc]. So2sin(c/2) =1 <« sin(c/2) =1 & ¢/2=F% & c=3.

The curve and the line will determine a region when they intersect yw .
. Y=

at two or more points. So we solve the equation ) + !

1 _ o
z/(z®+1) =mz = ¢ =z(ma®+m) = “ym 1 £ = mx!
x(mx2+m)—z:0 = z(mx2+m—1):O = ' 0 11"

m
1-m

z=0ormz’+m—-1=0 = x:OormZ:T =
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r=0o0rz == / 1_ 1. Note that if m = 1. this has only the solution z = 0, and no region is determined. But if
m

1/m-1>0 & 1/m>1 < 0<m < 1, then there are two solutions. [Another way of seeing this is to

observe that the slope of the tangent toy = z/ (z® + 1) at the origin is y' = 1 and therefore we must have
0 <m < 1.] Note that we cannot just integrate between the positive and negative roots, since the curve and the line

cross at the origin. Since mx and /(z* + 1) are both odd functions, the total area is twice the area between the

curves on the interval [O, 1/m— 1] . So the total area enclosed is

#“W:

0

[ ] e[ (e 1) gy T

z2+1
=[In(l/m-14+1)—m(1/m —1)] - (In1 - 0)

=In(l/m)-1+m=m—Inm-1

6.2 Volumes

1. A cross-section is circular with radius 2, so its area is A(z) = 7r(a:2) .

V= fol A(z)dz = folﬂ(m2)2d$ = ﬂ'fol ztdr = 71'[1:55]; =z

5
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3. A cross-section is a disk with radius 1/, so its area is A(z) = m(1/z)*.

V:/12A(x)dm:/127r<%>2 dm:w/i%dx:ﬂ[—i]j:n[—%—(—1)] _

y y
0 0|
8. A cross-section is circular with radius v/Z — 1, so its area is A(z) = 7(v& — 1 )2 =7(x—1)
V= [} Alx)dz = [y m(@ — 1) dz = [ 52 —:L‘]Z =n(2-5-3+2) =37
y y
1
o[ 0

5. A cross-section is a disk with radius /%, so its area is A(y) = ﬂ(\/@-)?
2 4
V= Jl A dy = [ 7(5) dy =7 [§ ydy =[39°], = 8r

y

6. A cross-section is a disk with radius y — 2. so its area is A(y) = 7r(y _ y2)
V= [l AW)dy = fy m(y—v?) dy =7 [y (v — 2 +7) dy =759 ~

—n3-4+1) =%

il
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1. A cross-section is a washer (annulus) with inner radius z2 and outer radius V/Z. s0 its area is
Az) =n(vz)? - w(zz)z =n(z —z*).
V= Az)de = 7rf01 (z—a*)dz = n[3a® -

y ¥

o|

8. A cross-section is a washer with inner radius 1 and outer radius sec x, SO its area is
A(z) = m(secz)? — (1) = m(sec’z — 1).

V=[! Alz)dz = [l m(sec?x — 1)dz =2n j'ol (sec’z — 1) dz = 2n[tanz — z]; = 2x(tan1 — 1)

=~ 3.5023
y
y=secx
\ / y=1
0 X
x=-1 x=1

9. A cross-section is a washer with inner radius y? and outer radius 2y, so its area is
2
Aly) =7(29)° — n(y°)" = m(4® — y).

V=[5 Alw)dy = [ (44* — y*) dy = w[3y° — 1] = m (%2 -

a3

) =5¢

10. y = z%/3

Aw) =71 = (52)" = n(1- ).

V= Jo Aw)dy = [ (1-y*) dy = [y~ 1y*]} = 2r

O

3/2 . . . . . . . .
&z =y%2 50 a cross-section is a washer with inner radius y*/2 and outer radius 1, and its area is

509

[continued]
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Y y

y= 3

11. A cross-section is a washer with inner radius 1 — v/z and outer radius 1 — z, so its area is
Alz) =7n(1 —z)* —7(1 — Vz) = m[(1-2z+2%) - (1 —2yz+z) =n(-3z+2"+2x).

V= Az)dz =7 [} (-3z+2* +2x)dz

1
=r[-%2* + 32’ + 3”3/2]0 =r(-2+5)=12

12. A cross-section is circular with radius 4 — z, so its area is A(z) = (4 - :1:2)2 =n(16 — 8z? + z*).

V=% A(z)dz = 2f02 A(z)dz = 2 [? (16 — 82 + a*) dz = 2 [16z — $2° + %w"’}z
127

—2r(32— % + 32) =64n(1- 3+ 1) =64m- T = "

4

13. A cross-section is an annulus with inner radius 2 — 1 and outer radius 2 — z”, so its area is

A(z)=m(2— 14)2 —r(2-1) =7(3 —4z* +2°).
V= fil A(z)dz = 2]01 A(z)dz =2m fol (3 —4a* +2%) dz = 21 [3z — $2° + %mg];

—on(3-§+3) = %
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14. V:/lgw{[i—(—1)]2—[0~(—1)]2}dz:7r/13
(

3
% + g>dac Zﬂ'[—l +21an
T x x 1
=7[(~=3 +2mn3) = (-1+0)] =7(2n3 + %) = 2r(In3 + 1)

y y

15. V = f_llﬂ'(l —3,12)2 dy = 2f017r(1 ~y2)2 dy = 27rf01 (1-2y
=2n[y - §u° + §9°), = 2m - 5 = Lor

y

16. y =z = =z =y? sothe outer radius is 2 — y?.
V= folrr[(2 - y2)2 -(2- y)2} dy = ﬂ'fol [(4—4y® +y*) - (4—4y+9°)]dy

=7 Jo (vt =50+ dy) dy = w0 - S+ 2Py = (b - 34 2) = &

5
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7y=2? = z= /¥y for > 0. The outer radius is the distance from z = —1 to z = ,/y and the inner radius is

the distance fromz = —1tox = y2.

V=Jom{ Vi (0] = [ - GO fy = ) (Vi) - (07 + )7 a
=mfoy+2vg+1-y' -2 —1) =nfolv+2vi-y'—2°)dy

1,2 4,3/2 _ 5 2,3 . 1 4 1 2\ _ 29
—7’[2?J+ 5y—§y]0~”(5+§—5—§)~mﬂ

18. For 0 < y < 2. a cross-section is an annulus with inner radius 2 — 1 and outer radius 4 — 1, the area of which is
Ai(y) = (4 —1)® — (2 — 1)*. For 2 < y < 4, a cross-section is an annulus with inner radius y — 1 and outer
radius 4 — 1. the area of which is A2(y) = (4 — 1)* — n(y — 1)%

4
V= fo y—ﬂfo[ 1)2#(2—1)2](11;—{—#[2 [(4*1)2—(y—1)2}dy
— n[8y)? +7rf2 (8+ 2y — v?) dy = 16m + 7 [8y + 12 — 1°];
=16m+7[(32+16 - %) — (16 +4—5)] = B

19. R, about OA (the liney = 0): V = fol A(z)dz = fol m(x3)?

20. R, about OC (the line z = 0):
V= fy Ay dy = fy [r(1)* - m(9)°] dy =7 fo (1~ v*/*)dy = [y - %ys/s]l =7r(1-3) =%
21. R, about AB (the line x = 1):
V= [lAwdy= [y m(1— y)" dy=m [y (1—25"° +4*%) dy
—nly- W B =034 =%
22. R, about BC (the line y = 1):
V= fol A(z)dz = fol [7(1)? = m(1 —2®)?] dz = f [1-(1—22°+ z°%)] dz
[0 %) dp = w3t - 37 = (3~ 3) =
23. Ry about O A (the line y = 0):
szol (z)dz = fo [ (1)2 771'(\/5)2] dmzn‘fol(l—m)da::ﬂ'[m—%mj];:w(l— =3
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1
24. R about OC (thelinez = 0): V = fo y)dy = fo dy—7rf0 y dy—ﬂ-{lyﬂo —z
25. Ro about AB (the line z = 1)‘
V= [ AW dy = [, [7(1)? —7(1 - y*)}dy =7 [} [1 - (1 - 2% + )] dy
1 b
=mfo@’ —ydy=n[3y’ - Ll =r(3-3) =%

26. R, about BC (the line y = 1)'
V=[yA@)de = [{ 71— yz) de =7 [} (1 - 22"/% +z)da
=rfo—4a¥ 1 4a] =n(1-4+1) =1

27. R3 about O A (the line y = 0):
V=fy A@)de= i [1(VE)" - w(a)] do = 7 [} (@ ~ o) dz = n[1a® — 2aT]} = w(} - 2) = %

Note: Let R = Ry + Rz + Ra. If we rotate R about any of the segments OA. OC, AB, or BC. we obtain a right
circular cylinder of height 1 and radius 1. Its volume is 77°h = 7(1)? - 1 = 7. As a check for Exercises 19, 23.
and 27, we can add the answers. and that sum must equal 7. Thus, Z + % + 5% = (2+T48)5 — 7

4
28. R3 about OC (the line z = 0):
1
V= Jy Awdy = [} [v(5)" - nw?)?] dy:fr/ W —y") dy

0
1
__[3,5/3 517 _ (3 _om
ﬂ[sy/ W] =r(i-1 =2
Note: See the note in Exercise 27. For Exercises 20, 24. and 28. we have 2?" + % + 2?" =7

29. R3 about AB (the line z = 1):
V= [ Ay)dy = [} [7’(1 —y?)? —m(1- \3/?7)2] dy=m [} [(1 22 +yt) - (1-2y% + ym)] dy
1
=7f/ (=2¢" +y* +20'° - 2/3)dy—7r[——y + 30+ 3y gys/ﬂ
0 0
=m(-3+3+3-§=%4¢
Note: See the note in Exercise 27. For Exercises 21, 25. and 29. we have 75 + 1% + Bz = ( S+ M)y = .
30. R3 about BC (the line y = 1):
V= fo dx—fo[ 1—:1:)2—7r(1—\/5)2]dz
1 1
=7r/ [(1—2;183—1—3:6)— (1—2m1/2+x)] da::n-/ (—22° + 2% + 221/2 —z)dx
0 0

1

—7r[——a: + 1 :I: + x3/2 lmz]ozw(—%-’r%—k%—%):w—l’r

Note: See the note in Exercise 27. For Exercises 22. 26. and 30. we have 5% T+ 4= (B2 = 7.

/4
3. V:ﬂ/ (1 — tan®z)? dz
0
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32. y = (z — 2)* and 8z — y = 16 intersect when
(x—-2)'=8x-16=8(z—2) &
(z-2)*-8(z~-2 =0 & (z-2)[(z—-2)°>-8]=0
& -2=0 or z—2=2 & zx=2o0r4
y=(z—-2)" => z-2=x¢y = z=2+Yy
[sincex >2].8c—y=16 = 8zx=y+16 =
T=3y+2

V:w/om{[lo—(gy+2)]2—[10—(2+ (‘/ﬂ)]z}dy

33.V:7r/07r [(I—O)Qﬁ(l—sinz)ﬂda: y

= w/ow [1* - (1 —sinz)?] do

3.V =r[[sinz+2)" -2°]de

35-V:7r/_f§{[3—<ﬂ2)12—[\/ﬁi—(~2)]2}dy y xz—y2=l:(3.2\f2‘)

:w/_m [52—(\/@-}-2)2} dy

ix=-2

N3 -242)

36.Solvetheequationsforw:(y——l)2=4—m & z=4—(y-1)’and2z+3y=6 < z=3-13y.

The points of intersection of the two curves are (3,0) and (—2,1). Therefore,

Ve [Tt -1 - 8 - 5 3y - (5]
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y =x*and y = In(z + 1) intersect at z = 0 and at

37.
x=a=0.747.
V= 7r/ {[ln(:c +1)° - (m2)2} dz ~0.132
0
1
L J
y=lInx+1) -1
38. 4 y=eP+ 2 y = 3sin(z?) and y = €*/2 4+ 2 intersect at
( r=ax0772andatz = b~ 1.524.
b 2
V= 7r/ {[3sin(z2)]2 - (em/2 + e_zx) }d:v
~7.519
I L)
-1 y=3sin(x?)
T 2 2 2
= - (- —[0-(- y
39,V 7r/0 {[sm z—(-1)]*=[0-(-1)] }da: .
CAS _18_17T2
..... Al
W y=-1 v
2
0. v :w/ (G- - 3 -2e™*?) y )
0 y=x
y=3
Césw(—2ez+24e— %‘2) 0 """"""""""""""""""
2,2
y_xel—\/Z
0 X

N fo"/Z cos® x dz describes the volume of the solid obtained by rotating the region

R={(z,y)|0<z<Z0<y< cosz} of the zy-plane about the z-axis.
42 _f;’ ydy =7 f25 (\/'13)2 dy describes the volume of the solid obtained by rotating the region
R={(z,y) |2<y<50<z<,/y} of the zy-plane about the y-axis.
1 1
43, 7r/ (y* - ys)dy =7 / [(y2)2 - (y4) 2] dy describes the volume of the solid obtained by rotating the region
0 0

R={(z,9) |0 <y < 1,y* <z <y?} of the zy-plane about the y-axis.
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M 0"/ ?[(1 + cosz)® — 1] dz describes the volume of the solid obtained by rotating the region

R = {(a:,y) [0<z<5,1<y<1+ cos:r} of the zy-plane about the z-axis.

Or: The solid could be obtained by rotating the region R’ = {(z,y) |0 <z < %,0 <y < cos m} about the

liney = —1.

45. There are 10 subintervals over the 15-cm length, so we’ll use n = 10/2 = 5 for the Midpoint Rule.

V= [1° A(z)dz ~ Ms = 1220 [A(1.5) + A(4.5) + A(7.5) + A(10.5) + A(13.5)]

= 3(18 + 79 + 106 + 128 + 39) = 3 - 370 = 1110 cm?®

8. V = [1° A(z) dz ~ Ms

10=07A(1) + A(3) + A(5) + A(7) + A(9)]

= 2(0.65 + 0.61 4 0.59 + 0.55 + 0.50) = 2(2.90) = 5.80 m*

47. We'll form a right circular cone with height h and base radius r by

revolving the line y = T about the z-axis.

hop N2 hp2 o, 2 1 3h
V—7r/0 (EI) d.r—ﬂ'/o ﬁxdx—wﬁ{gw]

r .
Another solution: Revolve £ = — 7Y + r about the y-axis.

h 2 h 2 22
T * T 2 T 2
= —_— = — _ — d
1% w/o( hy—i—r) dy 7r/0 [hzy hy+r] y

2 h

2
=g = | = (R et = e
0

r
* Or use substitution with u = r — % yand du = % dy to get

0 h R[1 5]° h({ 1 1
2f N __ hMlos R L8\ _ 1 2,
ﬂ/r u <—Tdu>— TFT[SU]T 71'T< 31") 37rrh

h _ 2
48,V:7r/ (Rf——R Ty)dy
0 h
h B N2
:7r/ {Rz_QR(R T)y+(R 7”) yz]dy
) h h

h
R(R—T) 1(R—7\,
2, 2, -
| Ry 3 y+3<h>y0

= n[R*h — R(R —r)h + 3(R —r)?R]

1xh[3Rr + (R* — 2Rr +1%)| = §mwh(R® + Rr +r?)

(h.r)

0. h)

/y=—%x+h

or x=—yy+r

s (r, 0) x

(0. H)

"B y= (R—x)

or x:R—%y
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Another solution: % = H-h by similar triangles. Therefore,
r

Hr=HR-hR = hR=H(R-r) = H:R—hl—%—.Now

T r
= %71'R2 - Aﬂ’T‘ (H h) [by Exercise 47] l H
hR rh rH rhR h
—1l.p2 1.2 H-p="12__Tt
3™k R-r 3" R—r { R R(R-7) l
3 .3 f——R—
= 3mh RR _: = i7h(R® + Rr +1?)

= 3 [7R 4 w4 R (1) | h = 3 (As + Ao + VAR )h
where A; and A, are the areas of the bases of the frustum. (See Exercise 50 for a related result.)

4. 22 +y* =712 & 2 =1y

T yS r
V:ﬂ'/ (r2—y2)dy:7r[r2y———}
r—h 3

r—h

4] o)

—h) [3r2 —(r— h)z]}

= (2?1

y
r—h
!
\‘/ x
Xt yi=p2

=ir{2r® - (r —h)[3r% — (r* — 2rh + h?)]}

ir{2r® —(r—h)[2r* +2rh — hz]}

Il

|
wh—\ w

m(2r® — 2r® — 2r2h 4 rh? 4 2r%h + 2rh? — R®)

= 3m(3rh® — h*) = Lrh?(3r — h). or. equivalently, A2 (r - g)

. o Az . a/2—b/2 b a-b b
50. A t f the 1 = — -int =4 7= - = el
n equation of the line is x Ay y + (z-intercept) o Y + 5 5 Y + 5

= /Oh A(y) dy = /Oh(2w)2dy
Lo L
%(a

h 2
[ a=b) b
_/0 [ o Yt

[ (a*b) 2
h 0
1
3
1
3

)y+b2J dy

h

y +b2yJ
(@ —b)%h +b(a — b)h + b2h = :(a® — 2ab + b* + 3ab)h
= (a + ab + bz)h
[Note that this can be written as 5 (A1 + Az + VA A3 ) h. as in Exercise 48.]

If a = b, we get a rectangular solid with volume b%h. If a = 0. we get a square pyramid with volume %bzh.

517
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51. For a cross-section at height y, we see from similar triangles that /2 h— y’ soa = b(l — %)

b2 h

Similarly, for cross-sections having 2b as their base and (3 replacing o, 8 = 2b(1 — g) . So

v [ awan= [P0 Pl )]
:./(;th (“E) dy~2b2/0 (1—%+h)dy P

2 3 1h
2 2 I b——
=2b {y——+ W} = 2b%[h — h + 3h]
= %th [ = %Bh where B is the area of the base, as with any pyramid.]

52. Consider the triangle consisting of two vertices of the base and the center of the base. This triangle is similar to the
corresponding triangle at a height y, so a/b = a/B = o = af/b. Also by similar triangles. b/h = B/(h — y)
= = b(h — y)/h. These two equations imply that a« = a(1 — y/h),
and since the cross-section is an equilateral triangle. it has area T

2 2
A(y):%~a-§a:1—(l—_4y—/l})—\/§.so T
y

o[ a2 [}

heo
28] 31y - -2

Ag
2
_ h
1 h 2 127

0 a

53. A cross-section at height z is a triangle similar to the base. so we’ll multiply the legs of the base triangle, 3 and 4. by

a proportionality factor of (5 — z)/5. Thus, the triangle at height z has area
1 5—2 55—z z2\2
= — . -4 = (1 — = s
A(z) 2 3( 3 ) < 3 ) 6 5) SO

V= jo dz—GfO(l—z/S)

=6ffu2(_5du) [u=1-2/5du= ~ldg

=-30[1u®]] = —30(—4) = 10em®

54. A cross-section is shaded in the diagram.
Alz) = (2y)* = (2Vr? —2? )2. $O
V=[" Alz)dz =2 4(r* — 2%) da

= 8[r2m — %xs](r)
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85. If L is a leg of the isosceles right triangle and 2y is the hypotenuse, y typical cross-
2 2 2 2 section of length
then * + 17 = (2y)° = 28 =4y® = =2 ! 2y = /36 — 9%
V=2 Ax)de =2 [ A(x)dz =2 [ 1)) dz = 2 [y da |
2— x
=22 1(36 - 00%) dx = § [2(4—a?) do
2 g
=3l4e -3l = 3(8-5) =2
56. The cross-section of the base corresponding to the coordinate y has length
2z = 2,/y. The corresponding equilateral triangle with side s has area \

Ay) = 52(3?) = (2z)2<{/1—5) = (2\/17)2(§) = y /3. Therefore.

1 1 0] x
V= [ AW dy = [ yV3dy = V3 [3y?], = 2.
57. The cross-section of the base corresponding to the coordinate y has length \ y /
2z = 2 \/y. The square has area A(y) = (2/7)* = 4y. s y=1

V=) Aw) dy = [ 4ydy = [27]) =2

58. A typical cross-section perpendicular to the y-axis in the base has length

y
£(y) = 3 — Zy. This length is the diameter of a cross-sectional semicircle 02
in S. so ;
, (0. y) s
2 2 2 SV T
£(y) ™ 2 L
v [ awa- 2 0 e g
, AWdy= | 55| dv=g [ (3-3y)dy T >
x 0
=3 /s uz(—gdu) [u=3— %y du = —Edy]
_ T [1,3 _ L _ 3r
=130l = K9 =7

59. A typical cross-section perpendicular to the y-axis in the base has length

Ly) =3 — %y This length is the leg of an isosceles right triangle. so
A(y) =3 [€(y)]*  [3bh with base = height]

=331 -39)]" =501~ 3v)’°

Thus,
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60. (a) V= [" A(z)dw = 2 [, Alx)dz =2 [ $h(2Vr? —2?) dz = 2h [ V/r? —z?da

(b) Observe that the integral represents one quarter of the area of a circle of radius . so V = 2h - i = %wth.
61. (a) The torus is obtained by rotating the circle (z — R)® + 3 = r2 y
about the y-axis. Solving for z. we see that the right half of the r1 X =g(y) o~ = f(¥)
'
circle is given by z = R + /72 — y2 = f(y) and the left half by \

z=R—\/r2—y?=g(y). So

V=r[" {f@) - g} dy
=or [y [(R*+ 2R Vim=y7 +1° —y*) — (R* - 2R R R DIk
—2r [T4R\/r? — g2 dy = 87R [T \/72 — g2 dy

(b) Observe that the integral represents a quarter of the area of a circle with radius 7, so
87R [T /12 —y2dy = 87R - jnr? = 2n°r’R.

62. The cross-sections perpendicular to the y-axis in Figure 17 are rectangles. The rectangle corresponding to the

coordinate y has a base of length 2 1/16 — y2 in the zy-plane and a height of —= \/— y. since ZBAC = 30° and
|BC| = \/- |AB|. Thus, A(y \/-y\/16 y? and

V= [l Aly)dy = 25 [, V16— yPydy

= % f106 u'/?(—1 du) [Putu = 16 — 2. so du = —2y dy]
_ e 12 1 2,3/ _ 128
—\/gfo u du_\/gs[ ]0 (64)—3\/5

63. (a) Volume(S1) = foh A(z) dz = Volume(S2) since the cross-sectional area A(z) at height z is the same for both
solids.

(b) By Cavalieri's Principle. the volume of the cylinder in the figure is the same as that of a right circular cylinder
with radius 7 and height h. that is. 7r>h.

64. Each cross-section of the solid S in a plane perpendicular

X
to the z-axis is a square (since the edges of the cut lie on
the cylinders, which are perpendicular). One-quarter of PLA o /1 P
this square and one-eighth of .S are shown. The area of x x V
this quarter-square is |PQ|* = r? — 2®. Therefore. 0 \/ 0

Az) = 4(r* - zZ) and the volume of S is
V=) A@)dz=4[" (r*—-2°)dz

:8[(;"(,,"2 — 2?) d:c:8[1“2m— %1’3]8 _ 16,3
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66.

67.
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The volume is obtained by rotating the area common to two circles of

y
radius r, as shown. The volume of the right half is /7
r/2 -

Viign = 7rfor/2 ydz =[] [r2 - (3r+ z)2] dz

r/2
=nlrte = +a)’] U =wl(Gr - 4) - (0= 3r)] = it e+

So by symmetry. the total volume is twice this, or %m'3.

Another solution: We observe that the volume is the twice the volume of a cap of a sphere, so we can use the

formula from Exercise 49 with h = 37: V =2 2wh*(3r — h) = %ﬂ'(ér)Q(Br —3r) =S

We consider two cases: one in which the ball is not completely submerged and the other in which it is.

Case 1: 0 < h <10 The ball will not be completely submerged, and so a cross-section of the water parallel to

the surface will be the shaded area shown in the first diagram. We can find the area of the cross-section at height
above the bottom of the bowl by using the Pythagorean Theorem: R? = 15% — (15 — :v)2 and 72 = 5% — (z - 5)2~
so A(z) = m(R? — r?) = 20mz. The volume of water when it has depth A is then

V(h) = [; A(z) dz = [ 20rz dz = [1072?]} = 10mh? cm®. 0 < h < 10,

Case 2: 10 < h <15 In this case we can find the volume by simply subtracting the volume displaced by the
ball from the total volume inside the bowl underneath the surface of the water. The total volume underneath the
surface is just the volume of a cap of the bowl.

so we use the formula from Exercise 49:

Viup(h) = $wh?(45 — h). The volume of

the small sphere is Vo = $7(5)% = 50,

so the total volume is

Viap = Voan = 37 (45h% — h® — 500) cm®.

Take the z-axis to be the axis of the cylindrical hole of radius 7.

A quarter of the cross-section through y, perpendicular to the

y-axis, is the rectangle shown. Using the Pythagorean Theorem

twice, we see that the dimensions of this rectangle are R \ ¢
z=\/R—y2andz = /72 — 92, 50 \y i R
N

1AW =zz=/r? —y2 /R* — 42 and 0 * N\ R
V=[" Al dy=[" 4/ —y2\/RZ —y2dy
=8 [y Vr2—y* VR? -y’ dy
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68. The line y = r intersects the semicircle y = VRZ — 22 whenr = vVR2 — 22 = r’=R?>—2?> =
2 . . . .
z2=R?—-r? = = 4+R?—r2 Rotating the shaded region about the z-axis gives us

R2—1‘2
2
V= / R2 — $2) —r?|dz
A /R2_.,.2
/\/m

0

2

=27 (R* —z> —r®)dz  [by symmetry]

Il
™o

A/ R2—-r2
/()

Our answer makes sense in
limiting cases. As r — 0,

V — 27 R3, which is the .
3 - (\/Rz —r2r

volume of the full sphere. As [ .1 \

r — R,V — 0, which makes (=R.0) 0 R0)  x

sense because the hole’s radius is
approaching that of the sphere.

69. (a) The radius of the barrel is the same at each end by symmetry, since the

2

function y = R — cx” is even. Since the barrel is obtained by rotating

the graph of the function y about the z-axis, this radius is equal to the

value of y atx = %h. whichis R — c(%h)2 =R-d=r.

(b) The barrel is symmetric about the y-axis, so its volume is twice the volume of that part of the barrel for > 0.

Also, the barrel is a volume of rotation, so

h/2

V= th/27ry d:v—27rfh/2( —c:c2)2da::27r[Ra:——ch —l—l 2 5]0

=27 (LR?h — L Reh® + 155°h°)
Trying to make this look more like the expression we want, we rewrite it as
= éwh[QRz + (R2 — %Rch2 + %czh‘l)]‘ But
R® — 1Rch? + £kt = (R — 4ch?)? — Aht = (R—d)? — 2(4ch?)® =% — 2d°.
Substituting this back into V, we see that V = 17h(2R? +r® — 2d?), as required.
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70. 1t suffices to consider the case where R is bounded by the curves y = f(z) and y = g(z) for a < z < b, where
g(z) < f(z) for all z in [a, b], since other regions can be decomposed into subregions of this type. We are

concerned with the volume obtained when @R is rotated about the line y = —k, which is equal to

Vo= [ ([f(z) + k> = [9(z) + k]*) dz = 7 [* ([f(2)]* — [9(2)]?) de + 27k [° [f(z) — g(z)] dz
=Vi+27kA

6.3 Volumes by Cylindrical Shells

1. y If we were to use the “washer”” method, we would first have
X=g,(y)

C:y/(a.b) /ngy to locate the local maximum point (a,b) of y = z(z — 1)*
¥

using the methods of Chapter 4. Then we would have to

! * solve the equation y = x(z — 1)? for z in terms of y to

obtain the functions z = g;(y) and = = g2(y) shown in the

first figure. This step would be difficult because it involves

the cubic formula. Finally we would find the volume using

V=nr[{ln®)] - lg2(v)]*} dy.

Using shells, we find that a typical approximating shell has radius z. so its circumference is 27z Its height is y. that

is, z(x — 1)%. So the total volume is

zt m3r ks
.15

5
V= fol 2rz[x(x — 1)?] dz = 27 fol (z* —22° + 2%) dz = 2n {% - QZ + 5

2. y A typical cylindrical shell has circumference 27z and height
sin(2?). V = foﬁ 2nzsin(z?) dz. Let u = 2. Then du = 2z dz.
soV =7 ["sinudu = n[-cosul] = [l — (—1)] = 2.

For slicing, we would first have to locate the local maximum point
(a,b) of y = sin(z?) using the methods of Chapter 4. Then we
would have to solve the equation y = sin(m2) for z in terms of y to

obtain the functions z = g1 (y) and z = g2(y) shown in the second

figure. Finally we would find the volume using

V= wfob {lar(¥)]* - [gg(y)]2} dy. Using shells is definitely

preferable to slicing.

"2 1 2
3.V:/ 27rx-—dm:27r/ ldx y
1 z 1

=2r [z =2r(2-1)=2r
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4, V=f0127rx~z2dw=27rfolm3d$

:27r[i1:4](1) =27 - % =3

5V = fol orze=® de. Letu = 2.
Thus, du = 2x dx. so
V= 7rf01 e "du = w[—e_"];

=x(l-1/e)

D

6.V =2r fos {z[3+2z — %) — (3—=x)]}dz =27 f03 [z(3z — 2®)] dz

=2 [3(32% — &®)de = 2n[2® — 1at]) = 2n (27— &) =2n (%) = 2

/() x ! x

7. The curves intersect when 4(z — 2)2 =22 — 4z +7 & 42’ — 16z + 16 = 2 —4z+7 &
322 - 1220 +9=0 < 3(x*—-42x+3)=0 & 3(@z—-1)(z—3)=0.soz=1or3.
V=2rm flg {z[(z* — 4z +7) —4(z — 2)*] } dz = or [} [x(a® — 4w + 7 — 42® + 162 — 16)] dz

=2r [} [z(—32% + 122 — 9)] dz = 27(-3) [3(a® — 42* + 3z) dz = —6m[f2* — %+ %zﬂ?
=—6r[(8 —36+ %)~ (L -4+2)] =—6m(20-36+12+3) = —6m(-§) =167
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8. By slicing:

By cylindrical shells:
V= .[01 271-m(\/5 - :L,Z) dr = 27 fol (1133/2 _ l's)diE

)

1
= 2227 — 1at]" = an(
0

S]]

PN

10. V = f()l 27Ty\/§dy — o fﬂl y3/2 dy

1
— 2,.5/2 .
—QW[gy/]0—45
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8
11.V:27r/0 (5 — 0)] dy y
8
8 43 7/3]8
:27r/y dy:27r[%y/}
0 0 x=0
67 67 768w
= (873 = 5(2")y = =28
(87 = T2 = T

4
1.V = 27r/ [y(4y® — v*)) dy
0

y
4 x=4y’—y?
4 N
:271'/ (4y® — y*) dy x=0
Jo T
4 0
= 27r[y4 — %ys]o = 27r(256 - L524)
— 256\ _ 512
=2 (%8) = 2=
13. The curves intersect when 422 = 6 — 2z & 222 4+z-3=0 & (2z+3)(z—1)=0 & z=-3orl

Solving the equations for x givesus y = 42> = z =41 /jand2z+y=6 = z=—-3y+3.

v =2r [ (0l(3v8) - (~3vi) b+ om [ (ol(-du+9) - (-3v8) by

4 9 4 9
:27r/0 (y\/ﬂ)dy+27r[1 (~3v* +3y+ 3v™7) dy=27r[§y5/2]0+27r[—§y3+%y2+éy5/2]4
=om($-32) +on[(- 32 + 32+ 20) — (-F +24+ )]

_ 128 433\ _ 1250, _ 250
= 5”+27T(15)— s T=737

Yy
N
(1.4)
2x+y=6
y=0 0] \ X x




0.V = [Pomyla— (y—1)* — (3-1)] dy

=9 f:y(—yQ + 3y) dy

=2 J§ (—4* +3¢%) dy = 2n [~ 3v* + 7]

=2m(-8 +27) =2n () = 2~

5.V = ff 2m(z — 1)2® do = 2m [z — %mS]Q

17
.

18.V = [ 2n[z — (—2)][(8z — 22°) — (4z — 2?)] dz

= f04 2m(2 + z)(4x — z?) dx
=27 f04(8x +2z% — 2®) dx
= 2#[4932 + %:1:3 — %14]3

=2m(64 4+ 128 — 64) = 261

SECTION 6.3 VOLUMES BY CYLINDRICAL SHELLS O

y

1

521
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19.V = [227(3 — y)(5 — z)dy

= f02 27 (3 — y)(5 —y? - 1) dy

:f0227r(12—4y—3y2—|—y3) dy y
2
=2r[12y — 29> —y* + iy‘l]o
=27(24 -8 —-8+4) =24r 0] >
1
20.V:/ 271'(y+1)(\/§—y2)dy=271'/(3;3/2—}—y1/2 v —y®)dy
1
_ o [2,5/2, 2,3/2 4 3] o (2.2 1 _ 1\_ o (20)_ 29n
2”[311/ +3y°% -y —53/]0—2”(3+§—z—§)—277(ﬁ)—w
y y
x=y’ (L1
0 X offf

NV = flz 2wz Inx dx
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2.V = [Ton(4—y)/smydy 2.V =[% 2n(5—y) (4 VT 7) dy

o]

m/4-0 m
4 16

f’r/ 2rz tanzdr ~ 21 - X (& tan32+g—’2‘tang—g+§—’2’tang—’2‘+7"tan ) ~ 1.142

2]. Ax =

8. Az=122=2n=>5andz} =2+ (2 +1). where i = 0. 1. 2, 3, 4. The values of f(x) are taken directly from
the diagram.
V= [;% 2raf(z) dz ~ 2m[3£(3) + 5£(5) + T(7) + 9£(9) + 11£(11)] - 2
~2m[3(2) +5(4) + 7(4) + 9(2) + 11(1)]2 = 3327

29. j 2rz® de = 27 fo *) dz. The solid is obtained by rotating the region 0 < y < z*. 0 < z < 3 about the

y-axis using cylindrical shells.

2 2
30. 27r/0 1—'3? dy = 27r/0 y<ﬁ) dy. The solid is obtained by rotating the region 0 < z < 142

0 <y < 2 about the x-axis using cylindrical shells.

3. [, 2m(3 - y)(1 — y?) dy. The solid is obtained by rotating the region bounded by (i) z = 1 — %, z = 0, and
y=0or (i) z=y? z=1 and y = 0 about the line y = 3 using cylindrical shells.

32 f"/‘l 2m(m — x)(cosz — sinx) dz. The solid is obtained by rotating the region bounded by

(1) 0<y<cosz—sinz,0<z< = Zor(i) sinz <y<cosz,0<z <= 7 about the line z = 7 using

cylindrical shells.

33. 1.2 From the graph, the curves intersect at z = 0 and at z = a ~ 1.32. with

z + 2% — 2* > 0 on the interval (0,a). So the volume of the solid

obtained by rotating the region about the y-axis is

—0.2 aAvk V:27r/ z(z + 2 — z*) dm:27r/ (@® +2° —2°)dx
0 [ ] 0 )

—0.2

=2r[3a° + o' — 12%]7 ~ 4.05
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34. From the graph, the curves intersect at z = 0 and at ¢ = a ~ 1.17. with

3z — 2% > z* on the interval (0, a). So the volume of the solid obtained

by rotating the region about the y-axis is

V= 27r/0a {3z - ®) — 2} dx = 27r/0a(3:1:2 —z* — 2% dx

= 27r[x3 — %:cs — éz(j]g ~ 4.62

3V = 27r/ [(% - :1:) (sin2w — sin? z)] dzx
0

3.V = 27r/ {lz - (=1)](z’sinz)} dz B on(nt + 7° — 120 — 67 + 48)
0

= o7 + 27t — 247° — 1272 + 967

37. Use disks:

V=f_127r(z2+a:—2)2 dm:“.ﬁg (z4+2x3—3x2—4m+4)dx

n[ia® + Lat —2® — 20 + 4], =w[(}+3-1-2+4) - (-% +8+8—8-18)]

81
(£ +3) =%
38. Use shells:

V= f12 27r:v(fx2 + 3z — 2) dzr =27 f12 (*CL‘B + 322 — 21:) dx

:27r[—;11-:c4+a:3 f:c2]('12 =2r[(—-4+8-4) - (-i+1-1)]=3
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39. Use shells: eyi? y=X+4/X/,
V= Jione - (<1)5 — (o +4/0)] do \<Fj5,’, <“/y: :
=21 [Nz +1)(5 - —4/z)de é g ZA
:27rf14(51;—:c2—4+5—m—4/a:)da: | ,
:27rf14 (—272—{—41:-}-1—4/m)dx:271'[—%x3—i—2:c2—1—:L'—41nar:]‘l1 e ¥

=2n[(-% +32+4—-4Ind) - (-3 +2+1-0)]

=2m(12 —4In4) = 87(3 — In4)

40. Use washers:

V:f_117r{[2—0]2 -[2-(1 —y4)]2}dy

=27 101 [4 -1+ y4)2] dy [by symmetry]

=27 fol [4 — (1 + 2y4 —|—y8)] dy = 2w fol (3 — ot — yg) dy

1 ™
=anfiy— 307~ ']} = 2n(3 - 2 - ) = 2n() = 24

4. Usedisks: V =7 /
Jo

2[ 1—(y~1)2J2 dy:ﬂ/02(2y—y2)dy=7f[y2—:5;:1/3]3:”(4“5) =37
42. Using shells, we have
L N e I Y ey ot 3 P
=or [Py 2\ /1-(y -1 dy=dr [* (u+ )VI—eZdu  [letu=y— 1]
:47rf_11u\/1—_u5du+47rf_11\/1_—?du

The first definite integral equals zero because its integrand is an odd function. The second is the area of a semicircle

of radius 1. that is, 3. Thus, V = 47 - 0+ 47 - T = 272,

ka

BV =2 2rzvr?—z2dec =27 Jy (r* - w2)1/2(—2$) dz = [—QW' 30— 5”2)3/2}

=—3m(0-r*) = gmrd

M.V = [Tone .2\ /r2 — (z — R)?dz y

=[" ar(u+ R)Vr? —u?du [letw =z — R] Z>
=d4nR [T r? —uldu + 4n T uvr? —uldu

The first integral is the area of a semicircle of radius r, that is. %m"2.

0

and the second is zero since the integrand is an odd function. Thus.

V= 47rR(%7r'r2) +4m-0=2rRr?.
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r r 2 3 277 2 2
45. V:27r/ x<—@x+h> dm:27rh/ (—x——f-x)dw:%rh T LT g Tk
0 r 0 7 3r 2 0 6 3

46. By symmetry, the volume of a napkin ring obtained by drilling a hole
of radius r through a sphere with radius R is twice the volume

obtained by rotating the area above the z-axis and below the curve

y = v/ R? — z2 (the equation of the top half of the cross-section of

the sphere), between = r and = R. about the y-axis.

This volume is equal to

outer radius R R
2/ onrhdz =2 2m / z VR — 2% dz = 47r[—-;— (R® —1:2)3/2] = in(R = ?)%?

nner radius "

But by the Pythagorean Theorem, R? — r* = (%h)Q, so the volume of the napkin ring is ‘—éw(%h)?’ = L7h® which
is independent of both R and r; that is, the amount of wood in a napkin ring of height h is the same regardless of the
size of the sphere used. Note that most of this calculation has been done already. but with more difficulty. in
Exercise 6.2.68.

Another solution: The height of the missing cap is the radius of the sphere minus half the height of the cut-out

cylinder, that is. R — 3 h. Using Exercise 6.2.49.

‘/napkm ring = ‘/sphcre — Veylinder — 2‘/&\}‘) = %WRS - 71'7'2h -2 %(R - %h’)z [3R - (R - %h)] = %ﬂ.h:;

6.4 Work

-

. By Equation 2. W = Fd = (900)(8) = 7200 J.

2. F =mg=(60)(9.8) =588 N: W = Fd =588 -2 = 1176
b ° 10 0 4
3.W=/ f(m)da::/ ——z—dmzlo/ — du [u=1+z, du=dr]
a 0 (1+117) J1 w
110
1 —
=10{—5] 210(—ﬁ+1)—9ft-]b
1

s 1

4. W = ff cos(3mz) dz = 3 [sin(%mc)]2 = %( 2 — ﬁg) =0N-m=01J.

Interpretation: From x = 1 to z = 3, the force does work equal to f13/2 cos(inz)dr = 2 (1 - 3@) Jin

accelerating the particle and increasing its kinetic energy. From z = % to = 2, the force opposes the motion of the
particle. decreasing its kinetic energy. This is negative work, equal in magnitude but opposite in sign to the work

done fromz = 1toz = 3.
5. The force function is given by F(x) (in newtons) and the work (in joules) is the area under the curve, given by

I8 F(z)de = [} F(z)dz + [, F(z)dz = 5(4)(30) + (4)(30) = 180 J.
6. W = [ f(z)de ~ Ma = Az[f(6) + £(10) + f(14) + f(18)] = 2*[5.8 + 8.8+ 8.2+5.2] = 4(28) = 112J
7.10 = f(z) = kz = 1k [4inches = § foot]. sok = 301Ib/ftand f(z) = 30z. Now 6 inches = £ foot, s0

W = [}/?30zdz = [152%],* = 12 ftlb.
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8.25 = f(z) =kz = k(0.1) [10cm=0.1m]. sok =250 N/mand f(z) = 250z. Now 5 cm = 0.05 m. so
= [y 250z dz = [1252°] 0" = 125(0.0025) = 0.3125 ~ 0.31J.

0.12
0

9.If ["? kxdz = 21. then 2 = [1k2?]0" = 1£(0.0144) = 0.0072k and k = = 2200 ~ 277.78 N/m.

0. 0072

Thus, the work needed to stretch the spring from 35 cm to 40 cm is

0.10 2500 1250,.271/10 _ 1250 1 1\ _ 25 .
Jo.os wdr = [0 x]1/20“ o (T05 — 100) = 33 ~ 1.041.

10. If 12 = jl)l kxdr = [%kaﬂ; = 1k. then k = 24 Ib/ft and the work required is

Jot 2z da = [12°)2/* =12 & = 2T — 675 frulp,

M. f(z) =kz.5030 = BNz andz = 2% m = 10.8 cm

12. Let L be the natural length of the spring in meters. Then

6= ooz krde = [Lka®]0 1270 = 1k[(0.12 - L)® = (0.10 — L)?] and
0.14— 14-L TP
10 = 091124_; krdr = [%kzz}giz_L = %k[(0.14 ~L)> - (012 - L)Q]. Simplifying gives us

12 = £(0.0044 — 0.04L) and 20 = k(0.0052 — 0.04L). Subtracting the first equation from the second gives

8 = 0.0008k, so k = 10.000. Now the second equation becomes 20 = 52 — 400L.so L = 43620 m = 8 cm.

In Exercises 13-20, n is the number of subintervals of length Az, and z; is a sample point in the ith subinterval [@iz1, ]

13. (a) The portion of the rope from z ft to (z + Az) ft below the top of the building weighs % Az 1b and must be

lifted z; ft. so its contribution to the total work is lmf’ Az ft-1b. The total work is

W = nlB.I;o iil 1z Az = 050 tzdr = [izQ]OO = 2500 = 625 fi-Ib
Notice that the exact height of the building does not matter (as long as it is more than 50 ft).
(b) When half the rope is pulled to the top of the building. the work to lift the top half of the rope is
Wi = [®leds = [iw2]§5 = %28 ft-Ib. The bottom half of the rope is lifted 25 ft and the work needed to

501

accomplish that is Wy = -25dz = 2[x]5) = 825 fIb. The total work done in pulling half the rope to

the top of the building is W = W1 + W, = 635 + 625 = Z 625 = % ft-1b.

14. Assumptions: 1. After lifting, the chain is L-shaped, with 4 m of the chain lying along the ground.
2. The chain slides effortlessly and without friction along the ground while its end is lifted.
3. The weight density of the chain is constant throughout its length and therefore equals
(8 kg/m)(9.8 m/s®) = 78.4 N/m.
The part of the chain z m from the lifted end is raised 6 — z m if0 <z <6m.anditislifted 0mifz > 6 m.

Thus, the work needed is

W = lim Z(6fx) 784Az = [°(6 - z)T8. 4dz =78.4[6z %aﬂg:(78.4)(18):1411.2J.

n—oo ;5

15. The work needed to lift the cable is lim Y27, 227 Az = [2°° 2z dz = [2%]°® = 250,000 fi-Ib. The work

needed to lift the coal is 800 Ib - 500 ft = 400.000 ft-Ib. Thus. the total work required is
250,000 + 400.000 = 650.000 ft-1b.
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16.

17.

18.

19.

20.

21.

The work needed to lift the bucket itself is 4 Ib - 80 ft = 320 ft-1b. At time ¢ (in seconds) the bucket is 7 = 2¢ ft
above its original 80 ft depth, but it now holds only (40 — 0.2t) Ib of water. In terms of distance, the bucket holds
[40 — 0.2(%:{;‘)] Ib of water when it is z; ft above its original 80 ft depth. Moving this amount of water a distance
Az requires (40 — =) Az ft-Ib of work. Thus, the work needed to lift the water is

W= lim 3 (40 — 227) Az = [*(40 — Lo)dz = [40z — F2°]7° = (3200 — 320) f-Ib

n—oo ;1
Adding the work of lifting the bucket gives a total of 3200 ft-1b of work.

At a height of z meters (0 < z < 12), the mass of the rope is (0.8 kg/m)(12 — z m) = (9.6 — 0.8z) kg and the
mass of the water is (3¢ kg/m) (12 — z m) = (36 — 3z) kg. The mass of the bucket is 10 kg, so the total mass is
(9.6 — 0.8z) + (36 — 3z) + 10 = (55.6 — 3.8z) kg, and hence. the total force is 9.8(55.6 — 3.8z) N.

The work needed to lift the bucket Az m through the ith subinterval of [0, 12] is 9.8(55.6 — 3.8z ) Ax. so the

total work is
n 12
W= lim 3 9.8(55.6 — 3.82]) Az = [,7(9.8)(55.6 — 3.8z) dz = 9.8[55.635 - 1.9x2]
Mn—00 ;=1 0

= 9.8(393.6) ~ 3857 )

1
The chain’s weight density is ?1% = 2.5 Ib/ft. The part of the chain z ft below the ceiling (for 5 < z < 10) has to

be lifted 2(z — 5) ft, so the work needed to lift the ith subinterval of the chain is 2(x; — 5)(2.5 Az). The total work

needed is

W= lim 3 2(z! - 5)(2.5) Az = [°

= 5[12? —52]2° = 5[(50 — 50) — (% —25)] = 5(¥) = 625 ftlb

[2(x — 5)(2.5)] dx = 5f510(m —5)dz

A “slice” of water Az m thick and lying at a depth of z; m (where 0 < 27 < 1) has volume (2 x 1 x Az) m,

a mass of 2000 Az kg. weighs about (9.8)(2000 Az) = 19,600 Az N, and thus requires about 19.600z; Az J

of work for its removal. So W = lim } 19,600z} Az = 01/2 19,600z dx = [98003:2];/2 =24501.

n—00 =]
A horizontal cylindrical slice of water Az ft thick has a volume of mr2h = m - 122 - Az ft® and weighs about
(62.5 1b/f¢®) (1447 Az fi®) = 9000w A Ib. If the slice lies 7 ft below the edge of the pool (where 1 <z} <'5),
then the work needed to pump it out is about 90007 z; Az. Thus,

W = lim Zn: 90007z; Az = fls 90007z dx = [45007rx2]? = 45007 (25 — 1) = 108.0007 ft-Ib

n—oo ;1
A rectangular “slice” of water Az m thick and lying = ft above the bottom has width z ft and volume 8z Az m?.

It weighs about (9.8 x 1000)(8z Az) N, and must be lifted (5 — ) m by the pump, so the work needed is about
(9.8 x 10%) (5 — z)(8x Az)J. The total work required is

3

W= [2(9.8 x 10°) (5 — )8z dx = (9.8 X 10°) [ (40z — 8x%)dz = (9.8 x 10°) [202* — 32°]

= (9.8 x 10%)(180 — 72) = (9.8 x 10%)(108) = 1058.4 x 10> =~ 1.06 x 10°J
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For convenience, measure depth x from the middle of the tank. so that —1.5 <z<l5m

Lifting a slice of water of thickness Az at depth x requires a work contribution of

AW = (9.8 x 10%) (2 (1.5)% — 22 > (6 Az)(2.5 + ), so

W [17(9.8 x 10°)12v/2.25 — 22 (2.5 + z) dz

= (9.8 10°)[60 [/ /3 ~ a2 dz + 12 [*/2, 0\ /2 — a2 de

The second integral is 0 because its integrand is an odd function. and the first integral represents the area of a

quarter-circle of radius % Therefore,

W~ (9.8 x 10°)60 [/ /9 — 22 dz = (9.8 x 10%)(60) (37) (2)? = 330,750 ~ 1.04 x 10° J

. Measure depth  downward from the flat top of the tank, so that 0 < z < 2 ft. Then

AW = (62.5)(2v4 — 22 ) (8 Az)(z + 1) ft-b. so
W (62.5)(16) [2(z + 1) VA~ 22 dz = 1000(]02 eVI-22de + [ \/4——x2d:1:>
= 1000 [f04 ul/Q(% du) + %ﬂ(22):‘ [Putu =4 — 22 sodu = —2z dz)
= 1000([% . %u3/2Jz + 7r> =1000(§ + ) ~ 5.8 x 10° ft-Ib
Note: The second integral represents the area of a quarter-circle of radius 2.

Let z be depth in feet, so that 0 < z < 5. Then AW = (62.5)7(v/52 — 22 )2 Az - z ft-1b and

W~ 6257 [ 2(25 — o®) dz = 62.5m[ %22 — 12%)° = 62,57 (825 _ 928 = 62.57m(%22)

~3.07 x 10* ft-Ib

If only 4.7 x 10° J of work is done. then only the water above a certain level (call it &) will be pumped out. So we

use the same formula as in Exercise 21, except that the work is fixed, and we are trying to find the lower limit of

integration: 4.7 x 10° & [ (9.8 x 10%)(5 — z)8z dz = (9.8 x 10°) [202% - £2°]° &

g><102z4s:(20.32—§-33)—(20h2-§h3) & 50

2h® — 15h* + 45 = 0. To find the solution of this equation, we plot
2h® — 15h2 + 45 between h = 0 and h = 3. We see that the equation

0 3
is satisfied for h & 2.0. So the depth of water remaining in the tank is l \J
about 2.0 m.

-40
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2. W ~ (9.8 x 920) [/212,/9 — o2 (§ + o) de = 9016[30 [/ \/§ — a2 dw + 12 [7* J/3—a2da].
Heref3/2,/ x2dm—%7r(%) = andfs/2 ,/%—ﬁdx:fé)“%ulmdu

9/4
[where u = 2 — 2%, sodu = —2zxdr] = [%u3/2]0 = (—28—7) = 32.50

W~ 9016[30 - S + 12 2] = 9016(X2x + &) =~ 6.00 x 10°J.

2]. V = mrz. so V is a function of z and P can also be regarded as a function of z. If Vi = mriz; and Vo = mriza,

then

w= [ Fa)de= / " 2 PV (2)) da

z1 1

= /12 P(V(z))dV(x) [Let V(z) = nr’z, so dV (z) = 7r? dz.]

1

V2
:/ P(V)dV by the Substitution Rule.
Vi

28. 160 Ib/in® = 160 - 144 Ib/ft%, 100 in® = £9% i, and 800 in> = {75 fi®.

k= PV4 — (160 - 144)(122) " = 23,040(Z5)"* ~ 426 5. Therefore, P ~ 426.5V " and

800/1728
W= 4265V 14 dV = 4265 [ﬁv—“]
100/1728 :

25/54

25/432

o

= (426.5)(2.5) [(“3’2)0 ‘- (5‘1)0‘4]
~1.88 x 10 ft-Ib

b

b b _
29 W= / F(r)dr = / G2 g = Gmams [_1] - Gm1m2<1 _ l)
a a T T a a b

1

30. By Exercise 29, W = GJMm(R m

) where M = mass of Earth in kg, R = radius of Earth in m,

and m = mass of satellite in kg. (Note that 1000 km = 1,000,000 m.) Thus,

1
7.37 x 108

_ —-11 24 1 _ ~ 9
W = (6.67 x 107'")(5.98 x 10°%)(1000) x (6‘37 105 ) ~ 8.50 x 10” ]
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6.5 Average Value of a Function

1 b 1 r1 5 1 2 L a1 L
1'fave:b_a/‘lf($)d$:1—_m/7 xd.’lJ:%'Q/O.’Ed$:[§Z‘]0:§

1
2 foe= 1 ff(l/x) dz = i[nz]] = 3Ind~0.46
/2 . T
3. guve = fl_—ojo/ coszdr = 2[sm.'zc}o/2 =2(1-0)=2

™

bogwe = 725 [2? Vit aPde =L [P u-2du  [u=1+ 2% du = 3c? dx]

5. foe=5ig fote dt =1 ["PF e (~Ldu) [u=—t* du= —2tdt.tdt = ~1 du)

= e = - E (e 1) = A1 e )

6. fae = %1—0 [T/ sec tan 6 do = Afsecd]s/* = 4 (v2-1)

1 hae = 715 [Fcosz sinzdr = L [T ut(—du) [u=cosz.du= —sinzdz]
=2 Lutdu= 12 [futdu = 2[30°)) = 2
B hue = —— 6Ldr=1f73u“2du [u=1+r,du=dr]
T6-1), (l+r)2 5 J2 )
— _30[,—-1717 _ _ _
I AR IO EoF IO S R P
1 ° 2 171 315
9. (a) fa\’czm . (113—3) d$:§{§($—3) ]2 (C)
41 (5.4)
=52 -(-1)*]=%8+1)=
y==3
(b)f(c):fa»e = (6—3)2:1 S -3 =41
& c=2o0r4
i 2.1) 4,1
0 23 4 5 x
1 4 37274
10. (a) fm:m/ Vade = [2a77] ©
X ’ 2f @2
11,.3/2 1 4 (Ei) y
‘a[x J =58-0=3 93

(b) f(c):fzn'e -~ \/EZ% =N c:1_96
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1.

12.

13.

14.

15.

16.

17.

18.

1 & . .
(@) fuoe = — 0./0 (2sinz — sin 2z) dz © 4
:%[ 2cosx+—cos2x]0 f
=4[+ - (244 = -4
() f(¢) = foe © 2sinc—sin2c=2 &
c1 ~ 1.238 or c2 =~ 2.808 0 = ! i
1 2 2
(a) fa\c = 9 _ 0/ (1+.’1§2)2 dz (© 1
1 %1
:5/ Ldu  u=1+0% du=2cdx] i
1 _2
I[P 11 2 -
T2 ul, 2\5 5 J
2
0 G &}
2c 2
b = Jav T oNo = 1 %)?
() f(c) = fae & 1+ 5 & Se=(1+¢)

& c1 ~0.2200rcy = 1.207
f is continuous on [1, 3]. so by the Mean Value Theorem for Integrals there exists a number c in [1, 3] such that

f1 z)dz = f(c)(3—1) = 8 =2f(c); thatis, there is a number c such that fle) = % =4.

b
The requirement is that 5 L 5 / f(z)dz = 3. The LHS of this equation is equal to
—YJo

b
%/ (2+6w—3x2)dx=%[2x+3w2—mg]g:2+3b—bz,sowesolvetheequation2+3b—b2:3 &
0

P-3b+1=0 & b=

3 -3)2-4-1-1
+v(=3) = 3 :i:2\/§' Both roots are valid since they are positive.

21
oo = g [ $(@) o 35 = g5 - RS @9) + 1039 + £(49)
“¢ 750 — 20 BRI
= %(38+29+48) =18 =38
(a) Vae = 155 0 % u(t) dt = &5 I. Use the Midpoint Rule with n = 3 and At = 1220 — 410 estimate I.

I ~ Ms = 4[v(2) + v(6) + v(10)] = 4[21 + 50 + 66] = 4(137) = 548. Thus, vye =~ 315(548) = 45% km/h.
(b) Estimating from the graph. v(t) = 45% whent =~ 5.2s.

Lett = 0 and t = 12 correspond to 9 A.M. and 9 P.M., respectively.

T = oxis 2% [50 + 14sin Srt] dt = 5[50t — 14 12 cos £mt] )*

1[50 12+14- 22 +14- 22] = (50 + 2)°F =~ 59°F

The = 301 - /30 (20+ 75e /%) dt = % [20t - 50- 75e—‘/5°]20 = % [(600 - 3750e /%) — (~3750)]
—0 /,

Il

3 (4350 — 3750¢%/%) = 145 — 125¢~%/° ~ 76.4°C



19. p,. =

20.

21.

23.

24,

. v =L/Rv(r)dr=l/R£—(R2—r2)dr
“TR-0/, R J, 4nl 4nlR

SECTION 6.5 AVERAGE VALUEOFAFUNCTION O 539

8 12 8 -1/2 8
dz =3 (x+1) d:c:[3 z+1] =9-3=6kg/m
0o VT+ *Jo 0

Co|

:

B d.
s=1gt> = t=/2s/g [’sincetZO].Nowv:d—E:gt:g 2s/9g=1+2g5s = v>=2s =

2
s= ;— We see that v can be regarded as a function of ¢ or of s: v = F(t) = gt and v = G(s) = /2gs. Note that
g

S et 1,42 v’ [F)?
vr = F(T) = gT. Displacement can be viewed as a function of t: s = s(t) = 59t°; also s(t) = 2 = 29

When ¢t = T, these two formulas for s(¢) imply that
V'2¢s(T) = F(T) = vr = gT = 2(1¢T?)/T = 25(T)/T (%)

The average of the velocities with respect to time ¢ during the interval (0,77 is

Vt-ave = Elvc = T—.
= i_) [since s(0) =0] = EUT by ()]
T 2

T
L - /0 F(t)dt = 7 [s(T) - s(0)]  [by FTC]
T

But the average of the velocities with respect to displacement s during the corresponding displacement interval

[5(0), s(T)] = [0, s(T)] is

s(T) s(T) oy s(T)
Us-ave = Ga\re - *1—' / G(S) ds = L vV 298 ds = (;g) / 81/2 ds
0 0

s(T) =0 s(T) Jo s
= ;{?; ' g[sm];m _ % _ 8_(% : [S(T)J 3/2 ; /2gs(T) = %vT [by (%)]

Viee = éfos V(t)dt = %fos =[1- cos(2nt)] dt = = f05 [1- cos(Znt)] dt

Il

= [t—aesin(3rt) ]S = 2 [(5-0) -0 = & ~04L

4

3|7 P 2) s _ PR®
0 3 67]1‘

Il
E)
G
<
|
=

2

4nl

Since v(r) is decreasing on (0, B], vpay = v(0) = - Thus. Ve = 2vx.

Let Fi(z) = [ f(t)dt for z in [a, b]. Then F is continuous on [a. b] and differentiable on (a. b). so by the Mean
Value Theorem there is a number c in (a, b) such that F(b) — F(a) = F'(c)(b— a). But F'(z) = f(z) by the

Fundamental Theorem of Calculus. Therefore. fab f(t)dt — 0= f(c)(b—a).

b o b
fuela b = ﬁ/ f(e)dz = ﬁ/ f(x)dz+ﬁ/{. f(z)da

~ 1 [ b— 1 b - b—
§_Z[c‘a/a f(w)dm}+b_2 [ﬁ/ f(ac)dzJ:—-zizfm[a,c]+—b*;fm[c,b]
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APPLIED PROJECT Where to Sit at the Movies

T

Bl e
TIO' lxsina
a )

- 9'—p——x cosa@ —

|VP| =9+ zcosa, |PT| = 35 — (44 zsina) = 31 — zsina, and
|PB| = (4 + zsina) — 10 = zsina — 6. So using the Pythagorean Theorem, we have

\VT| = \ﬂVP|2 +|PT)? =+/(9+ zcosa)? + (31 — zsina)® = a. and

|VB| = \/lVP|2 +|PB? = \/(9 +zcosa)® + (zsina — 6)> = b. Using the Law of Cosines on AV BT, we

a? +b% — 625 a? +b% — 625

get 252 = a® + b® — 2abcosf & cosf = 5ab 53

& 0= arccos( > as required.

2. From the graph of 8, it appears that the value of = which maximizes 9 is x ~ 8.25 ft. Assuming that the first row is
at = 0. the row closest to this value of z is the fourth row, at z = 9 ft, and from the graph, the viewing angle in

this row seems to be about 0.85 radians, or about 49°.

1

0 - 60
3. With a CAS, we type in the definition of 6, substitute in the proper values of @ and b in terms of x and
a = 20° = § radians, and then use the differentiation command to find the derivative. We use a numerical root
finder and find that the root of the equation df/dx = 0 is x ~ 8.253062, as approximated in Problem 2.
4. From the graph in Problem 2, it seems that the average value of the function on the interval [0, 60] is about 0.6. We
can use a CAS to approximate g5 foﬁo 0(x) dx = 0.625 ~ 36°. (The calculation is much faster if we reduce the

number of digits of accuracy required.) The minimum value is 6(60) ~ 0.38 and, from Problem 2. the maximum

value is about 0.85.

6 Review

CONCEPT CHECK

1. (a) See Section 6.1, Figure 2 and Equations 6.1.1 and 6.1.2.

(b) Instead of using “top minus bottom” and integrating from left to right, we use “right minus left” and integrate

from bottom to top. See Figures 11 and 12 in Section 6.1.

2. The numerical value of the area represents the number of meters by which Sue is ahead of Kathy after 1 minute.
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3. (a) See the discussion in Section 6.2, near Figures 2 and 3, ending in the Definition of Volume.

(b) See the discussion between Examples 5 and 6 in Section 6.2. If the cross-section is a disk, find the radius in

terms of z or y and use A = 7(radius)”. If the cross-section is a washer. find the inner radius 7, and outer

radius 7o, and use A = m(rg,) — m(rl).

4. (a) V = 2mrh Ar = (circumference) (height) (thickness)

(b) For a typical shell, find the circumference and height in terms of z or y and calculate

V= fab (circumference) (height) (dz or dy). where a and b are the limits on z or y.

(c) Sometimes slicing produces washers or disks whose radii are difficult (or impossible) to find explicitly. On other
occasions, the cylindrical shell method leads to an easier integral than slicing does.

5. fos f(z) dz represents the amount of work done. Its units are newton-meters, or joules.

b
6. (a) The average value of a function f on an interval [a, b] is fo. = b i - / f(z)dz.

(b) The Mean Value Theorem for Integrals says that there is a number ¢ at which the value of f is exactly equal to
the average value of the function. that is. f(c) = f.. For a geometric interpretation of the Mean Value Theorem
for Integrals, see Figure 2 in Section 6.5 and the discussion that accompanies it.

EXERCISES

10=2>-2-6=(z-3)(z+2) < z=30r-2. S0 Y

A:ff2 [0—(.rz—:c—6)]dm=f_32(—m2+x+6)da:

I

[—%:1:3 + %:1:2 + 63’]:

9+35+18) — (§+2-12)

125
6

220-2°=2>-12 & 32=222 & 2°=16 < z— 44
So

A=[*,[(20 - 2%) — (22 —12)] de = [*, (32 — 22?) da

=2 f04 (32 — 22%) dz [even function]

(0,—12)
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3 A =f01 [(ex_l)_ (x2_m)]dz
:fol(ez_1_$2+$)d$: [ez '-T—%Zg—f——%mz]

=(e-1-1+3)-(1-0-04+0)=e— %

1
0

4 >’ +3y=—y & Y’+4y=0 & yly+4)=0 &
y=0or —4.
0 0
A= [ v-wrslay= [ (v -wa
0

=[5 -2, =0-(§-32)=%

= [ - 427+ [t - 3],
=[G-3 -0+ [(§-5v2) - G- 3)]

1. Using washers with inner radius 22 and outer radius 2z, we have

V= n/oz [(22)* - ()] da = w/2 (42 — a*) do

0
—nlge ~ 4ol = n(% -
_ 64r
15

g

) =32m- &

y=x*—2x




8 1+y’=y+3 & P*-y-2=0 &
(y—2)y+1)=0 & y=2or—1.
2 2 2)2
V:7r/ [(y+3)—(1+y)}dy

-1

2
=7r/ (W +6y+9-1-2°—y*)dy
-1

2
=7T/ (8+6y —y” —y")dy = m[8y +3y* — Ly® — 1y®
1

=716 +12 -5 - %) - (-8+3+ 3 +3)]
117

8 v =x [ [0 - (0 -0 1P}y
3
= 27r/0 [(10 —y*)? — 1] dy
:27r/3(100—20y2+y4 —1)dy

3
= 27r/ (99 = 20y° +y*) dy = 2[99y — Ly® 1 15°)°
0

= 2m (297 - 180 + 243) = 1636z

0.V = 7r/22 {[0-2% = (-1 = [ +1) - (-1))*} dz

= 7r/2 [(10 - 2%)* — (2% + 2)2] dz

2

2
=27r/ (96—24:r2)dx=487r/ (4 — 2% dzx
0 0

= 48n[4z — 12°]? = 487 (8 — &) = 2561

1. The graph of 2 — y?> = a2 is a hyperbola with right and
left branches. Solving for y gives us yvi=z?-a® =
y = £vz% — a%. We'll use shells and the height of each
shell is vz2 — a2 — (—vz? = a?) =22 — a2,
The volume is V = faa+h 21z - 222 — a2 dx. To eval-

uate, let u = 22 — a2, so du = 2z dz and rdr = % du.

When z = a.u = 0, and when z = q + h.

u:(a+h)2—a2:a2+2ah+h2fa2:2ah+h2.

2ah+h?
Thus, V = 47 f02ah+h2 Vu (3 du) = 27r[§u3/2J = 2n(
0

2/
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12V = f;‘://; 9wz coszdx [by the method of cylindrical shells]

BV =[r[(1-a%)" - (1- 2%)*| de
8.V = [l2r(8 —2°)(2—a)dx
15. (a) A cross-section is a washer with inner radius 22 and outer radius .
V= (@) - ()] de = [l n(a® - 2*) do = n[a* - 37, = ]

1
3 5% lo 3

(b) A cross-section is a washer with inner radius y and outer radius \/ﬂ
V= fon](ve) —v?| dy = o wly — o) dy = [y - Wlo=rli-3=%
(c) A cross-section is a washer with inner radius 2 — z and outer radius 2 — z2.
V= w[(2 - :162)2 -(2- m)Q] de = [} w(z* - 52 + 4z) do = m[iz® — 2% + 2m2](1)
—rli-3+2) =%
16. (a)A:f01(2m~m2 —z°)dz = [mz - %zs—%w“];: 1-1- 1_ 5

(b) A cross-section is a washer with inner radius 2% and outer radius 2z — 22, so its area is 7 (2z — :c2)2 — ﬂ(z3)2.
V=[] Alz)dz = I Tr[(Zw - z2)2 - (:1:3)2] de = [y m(42® —42® + 2" — z°) dz

_ . [4.3 4 1.5 1,71t _ (4 1 1) _ 4w
=nlda® —at+ 1 - o] =n(3- 145 -7) =%
(c) Using the method of cylindrical shells,
1% :fol 27r:c(2:v—m2—:c3)dm=fol o (222 — z° — z*) de =2n[22® — fa* — ¢ 5](1)

—om(2-1-1)= Bz

17. (a) Using the Midpoint Rule on [0, 1] with f(z) = tan(z®) and n = 4, we estimate
! 2 2 2 2
A= /0 tan(z”) dz ~ i[tan((%) ) +ta,n((%) ) + tan((%) ) +tan<(%) )] ~ 3(1.53) =~ 0.38
(b) Using the Midpoint Rule on [0, 1] with f(z) =7 tan®(2?) (for disks) and n = 4, we estimate

V= /01 f(z)dz = iw[tanz((%)2> +tan2((%)2) +tan2((%)z) +tan2((§)2)] ~ Z(1114) ~ 087
1

18. (a) From the graph, we see that the curves intersect at T = 0 and

atz = a ~ 0.75, with 1 — 2% > 2® —z + 1 on (0, a).

(b) The area of R is
A= [o[(1-2) - (af —2+1)] dz = [-1a® — 3o + Jo°]5 ~ 0.12
(c) Using washers, the volume generated when R is rotated about the z-axis is
V= 7rf(;l [(1 - .7:2)2 - (376 —z+ 1)2] dxr = Trfoa(4m12 4227 —22% 4+ — 3% + 21‘) dx
L

13

8 2.7, 1,5 3 21a
3T+ 3T — 3T +ir0 -z +:c]0~0‘54

N

= n[-

—



19.

20.

21.

23.

24.

25.

26.

2].

28.
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(d) Using shells. the volume generated when @ is rotated about the y-axis is
V= [y 2nz[(1-2%) — («° —z4+1)]de=2n['(-2*-2"+z ?) dzx

:2#[—%14 - %acg + iz ]o ~ 0.31

The solid is obtained by rotating the region R = { (z,y) |0<xz<Z,0<y<cos w} about the y-axis.

vl

The solid is obtained by rotating the region & = {(z,y) | 0< z < Z,0 <y < v/2 cos x} about the z-axis.

ME]

The solid is obtained by rotating the region R = {(z, Y)|0<y<20<c<4— y2} about the z-axis.

. The solid is obtained by rotating the region R = {(m y)|0<z<1,2-/z<y<2-— w2} about the z-axis.

Or: The solid is obtained by rotating the region R = {(z Y]|0<z<1,22<y< \/5} about the line y = 2.
Take the base to be the disk 2 + y> < 9. Then V = f_33 A(z) dz, where A(zo) is the area of the isosceles right

triangle whose hypotenuse lies along the line = zg in the zy-plane. The length of the hypotenuse is 2 v/9 — z2

and the length of each leg is v/2v/9 — z2. A(z) = %(\/5\/9 — 2 )2 =9-1z2 50

V=2 [ Az)dz = 2 [} (9 - 2?) dz = 2[92 — 12%)° = 2(27 - 9) = 36.

V:fle( x-?[o d$“2f0[ ) ] f [(1_‘732)]2‘&
) =

=8y (1-20° +2*) dz = 8[z — 2% + 1a®]} = 8(1 — §+

Equilateral triangles with sides measuring %x meters have height ix sin 60° = lg—gcc‘ Therefore,

Al@)=1-1¢. LBy 8,2 y_ J2° A(z) de = g f020 z?dr = g [%ws]% = 8000v3 — —ilz‘z 3 m?

8 64 0
(a) By the symmetry of the problem, we consider only the solid to the right of the origin. The semicircular
cross-sections perpendicular to the z-axis have radius 1 — z, so A(z) = 3m(1 — z)2. Now we can calculate
V=2 A@)dz =2 [} in(1 - a)’dz = ['n (1-2)*de=-%[(1-2)*], = Z.
(b) Cut the solid with a plane perpendicular to the z-axis and passing through the y-axis. Fold the half of the solid in
the region z < 0 under the zy-plane so that the point (—1, 0) comes around and touches the point (1,0). The
resulting solid is a right circular cone of radius 1 with vertex at (z,y,2) = (1,0,0) and with its base in the

yz-plane, centered at the origin. The volume of this cone is smrth=3r.12.1=1

w

f(@)=kr = 30N=k(15-12)cm = k=10 N/em = 1000 N/m. 20cm —12cm = 0.08 m =
= Jo ** kadz = 1000 [;** zdz = 500 [22]°°° = 500(0.08)* = 3.2 N-m = 3.2,

The work needed to raise the elevator alone is 1600 1b x 30 ft = 48.000 ft-Ib. The work needed to raise the bottom
170 ft of cable is 170 ft x 10 Ib/ft x 30 ft = 51,000 ft-Ib. The work needed to raise the top 30 ft of cable is
J5° 10z dz = [52%]3° = 5- 900 = 4500 ft-lb. Adding these. we see that the total work needed is

48,000 + 51,000 + 4.500 = 103,500 ft-Ib.
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29. (a) The parabola has equation y = az? with vertex at the origin and passing

y
through (4,4). 4 =a - 4> = a=3 = y=1s> = z? =4y 8]
= z = 2,/y. Each circular disk has radius 2 /y and is moved 4 — y ft. T
4 ft
W:jo (f) 62.5 (4 — y)dy~2507rj0 (4 —y)dy \
X
= 2507 (2% — 14°]2 = 250 (32 — &) = 20907 ~ 8378 fi-lb o
Y=7
(b) In part (a) we knew the final water level (0) but not the amount of work 17
done. Here we use the same equation, except with the work fixed, and the
lower limit of integration (that is, the final water level — call it h)

0 4
unknown: W = 4000 < 2507 [2y? — 1y°]) = 4000 & ‘\ \‘
16— [(32— &) — (2n* - 3h%)] & h3—6h2+32—4-j- =0.

=17

We graph the function f(h) = h® — 6h* +32 — 48 4 the interval [0, 4] to see where it is 0. From the graph.
f(h) = 0 for h &~ 2.1. So the depth of water remammg is about 2.1 ft.

30. fue = 5 fy tsin(t?)dt = 5

=% 0 smu( du) [u = t2, du = 2tdt]

0

100

=% [~ cosu]O = 55(—cos100 + cos 0) = = (1 — cos 100) = 0.007

x+h _
3. }llin}) fae = hm (—1———/ f(t)dt = lim M where F(z) = [ f(t)dt. But we

z+h)—z h—0 h

recognize this limit as being F”(z) by the definition of a derivative. Therefore, ’llin}} fae = F'(z) = f(x)

by FTCI.
32. (a) R is the region below the graph of y = z2 and above the z-axis between z = 0 and = b, and Ry is the
region to the left of the graph of z = /Y and to the right of the y-axis betweeny = 0and y = b2. So the area of

2
Ry is Ay = fo z?dr = [éms] = b7, and the area of Rz is A2 = fo Vidy = [2y3/2]0 = 2b°. So there
is no solution to A; = Az for b # 0.
(b) Using disks. we calculate the volume of rotation of Ry about the z-axistobe Vigz = fob (w2)2 dz = éwbs.
Using cylindrical shells, we calculate the volume of rotation of R about the y-axis to be
Vig =27 fé’x(mz) dr = 27r[%1x4]g =1inbt. SoVie =Viy & inp® = inb?! & 20=5 &
b= 3. So the volumes of rotation about the z- and y-axes are the same forb= 2.

(c) We use cylindrical shells to calculate the volume of rotation of R2 about the z-axis:
b2
Ry p =27 fob2 y(\/7)dy =27 [%y‘r’/g] . " 47b°. We already know the volume of rotation of @R, about the
z-axis from part (b), and R1 o = R2z & éﬂb5 = 27b°. which has no solution for b £ 0.
(d) We use disks to calculate the volume of rotation of Rz about the y-axis:

oy =7 [2 (V) dy=r[307]} =

é b%. We know the volume of rotation of 1 about the y-axis from
part (b), and Ry y = R2y irbt = 3w b*. But this equation is true for all b, so the volumes of rotation
b

about the y-axis are equal for all values of b.



[1 PROBLEMS PLUS

1. (a) The area under the graph of f from 0 to ¢ is equal to fot f(z) dz. so the requirement is that fot f(x)dz =t for

all ¢. We differentiate both sides of this equation with respect to ¢ (with the help of FTC]1) to get ft) =3¢

This function is positive and continuous, as required.

(b) The volume generated fromz = Oto z = b is f(f 7[f(z)]® dz. Hence. we are given that b = fobw[f(:z:)]2 dz

for all b > 0. Differentiating both sides of this equation with respect to b using the Fundamental Theorem of

Calculus gives 2b = 7[f(b)]* =  f(b) = \/2b/n. since f is positive. Therefore, f(z) =+/2z/7.

2. The total area of the region bounded by the parabola
y =z — x> = z(1 — z) and the z-axis is
Ji (e %) de = [1a? ~ 127} = 1.

Let the slope of the line we are looking for be m. Then the area above this

y=x—x?

™,

y=mx

line but below the parabola is [i* [(z — %) — mz] dz. where a is the
z-coordinate of the point of intersection of the line and the parabola. We
find the point of intersection by solving the equation z — 22 = mz <

l-z=m <& zx=1-m. Sothevalueofais1— m.and

0 0

= $(1=m)(1 = m)* = §(1 - m)* =

We want this tobe half of §.s0 (1 -m)’ =& & (1-m)P=8§ &

1

[ [(z—2%) —ma]dz= [ (1 =m)z — 2% dz = [L(1 — m)z? — %ws]l_m

é(l —m)3

l-m=¢3; © m=1- 3%/5 So the slope of the required line is 1 — —31—2 ~ 0.206.

S

3. Let a and b be the z-coordinates of the points where the line intersects the
curve. From the figure, R = Ry, =
Jo [e— (8 —272%)] dz = fab [(8z —272°) — ] da

[cx — 42® + %w‘l]; = [4x2 - %m‘l - cm]z

ac — 4a® + %zf = (4b2 — %b4 —be) — (4a2 — %}a4 —ac)
0=db" — 25" — be = 46° — 20p* — p(8b — 27°%)
=4b* — bt — 8b% + 276" = 81pt _ 4p?
= (55 - q)

1

2 _ 16 _ —
Soforb> 0.7 =18 = b=4 Thus.c=8b— 276" = 8(%) — 27(84) —

y

y=8x—27x3

R\ -

(a,c) (b.0)

32
9

64 _ 32

27 27

547
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(a) Take slices perpendicular to the line through the center C' of the bottom of the glass and the point P where the
top surface of the water meets the bottom of the glass.

— P
Q vr-y R r—y
h
. 0 S
y
. r r+y
c A L B

A typical rectangular cross-section y units above the axis of the glass has width 2 |QR| =2+/7% —y2 and

length h = |QS| = EL; (r —y). [Triangles PQS and PAB are similar, so % = %?—: = 7"_2—?_11] Thus,

T L r
V=/ 2 7'2—y2~5(1“*y)dy:L/_T(1—%)\/72——y§dy

—

R GETU R Gy

T Jr

mr? L 0 {the first integral is the area of a semicircle of radius 7. p—1

and the second has an odd integrand 2

(b) Slice parallel to the plane through the axis of the glass and the point of contact P. (This is the plane determined
by P. B. and C in the figure.) STUV is a typical trapezoidal slice. With respect to an x-axis with origin at C as
shown, if S and V have z-coordinate z. then |SV| = 2 V7% — z2. Projecting the trapezoid STUV onto the
plane of the triangle PAB (call the projection S'T'U’'V"). we see that |AP| =2r |SV| =2 Vr? —z2. and
|S'P| = [V'A| = L(|AP| - |SV|) =1 — V17 — 22

S
P
.
BNG”
N X
14 U
>
A L B
v
L .
By similar triangles. % = E‘% 50 |ST| = (r—vr?—a?)- 5 In the same way, we find that

VU] _ |AB| o L oL .
|V,P|———|AP|.SO\VU|—\VPl o = ([AP| = [V'A]) 2r—(r+\/r-_x—) L

The area A(z) of the trapezoid STUV is 3|SV| - (|ST| + [VU]): that is,

Alz) =4 -2Vr2 —a?- (r~\/r2—m2)~%+(r+\/r2—m2)~—2L—T] = L+/r2 — z2. Thus,

2 2
V=" A@)dz=L[" Vr2-z*dc=1L- L;— = 7rr2L'

(c) See the computation of V' in part (a) or part (b).
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(d) The volume of the water is exactly half the volume of the cylindrical glass. so V = %rrrzL.

]

(e)

Choose -, y-. and z-axes as shown in the figure. Then slices perpendicular to the z-axis are triangular, slices
perpendicular to the y-axis are rectangular. and slices perpendicular to the z-axis are segments of circles. Using
triangular slices, we find that the area A(z) of a typical slice DEF. where D has z-coordinate z. is given by

L

L L

r r r L 377
V= A(:c)dar::£ (z-xz)dzzé/ (r*—2%)de == |r?z - L
_r 2r J_. r Jo T 31,
3
= 5( 3 %) _L 2r® = 2r%L [This is 2/(37) & 0.21 of the volume of the glass.]
T T

5 @V =nh®(r-h/3) = 37h?(3r — h). See the solution to Exercise 6.2.49.

(b) The smaller segment has height A = 1 — z and so by part (a) its volume is

V=3r1-2)?[3(1)-(1-2) = 37(z — 1)%(x + 2). This volume must be 3 of the total volume of the
m(1)%. So im(z — 1)%(z +2) = s(3m) = (@ -2241)(z+2) =

4
3 =
= 32°-9z+4+2=0. Using Newton’s method with f(z) = 323 — 9z + 2.

sphere, which is 4

2} -3 4+2= %

322 — 9z, +2
9z2 — 9

z3 & 0.2261 ~ x4, so, correct to four decimal places, z & 0.2261.

fi(x) =922 — 9, we getTpyy =y — . Taking £, = 0. we get 25 &~ 0.2222. and

(¢) With7 = 0.5 and s = 0.75, the equation z* — 3rz? + 4r3s = 0 becomes z* — 3(0.5)z* + 4(0.5)(0.75) = 0
= 3 - %3:2 + 4(%)% =0 = 823-12224+3 =0 We use Newton's method with

3 _ 19,2
f(z) =82® — 1222 4 3. f'(z) = 2422 — 24z. s0 Tnt1 = Tp — M Take z; = 0.5. Then
242 — 24z,

z2 & 0.6667. and z3 =~ 0.6736 ~ z4. So to four decimal places the depth is 0.6736 m.
(d) (i) From part (a) with » = 5 in.. the volume of water in the bowl is

V=31nh®(3r —h) = 3Th*(15 — h) = 5rh? — 3mh®. We are given that C(li—‘t/ = 0.2 m%s and we want to

dh av dh dh dh 0.2
find — wh =3. — =1 e 2—“ _—= —
n 7 when h Now 7 Orh 7 wh 7 SO pr ~(10h — 77) When h = 3, we have

dh 0.2 1 4
dt ~ w(10-3-32) _ 1055 0003 in/s
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(ii) From part (a). the volume of water required to fill the bowl from the instant that the water is 4 in. deep is
V=1 §7r(5)3 - %w(4)2(15 —4)=2.1257 — Bq1r = Zrr. To find the time required to fill the

bow! we divide this volume by the rate: Time = 752 = 307 ~ 387 5 ~ 6.5 min

6. (a) The volume above the surface is fOL_h A(y) dy = _L'h A(y)dy — fi)h A(y) dy. So the proportion of volume

L—h
A(y)d dy —
above the surface is Jo ) v _ f h Aly) dy f’ W) dy

. Now by Archimedes’ Principle, we

TR Ay ,!_Lh " Aly) dy
have F=W = pg[°, Aly)dy = pog [, " Aly) dy, s0 [°, A(y)dy = (po/ps) [5n " Aly) dy
L—h L-—h L h
A(y) d " Ay) dy — A(y) d —
Therefore, ‘OL_h (v) dy —o=h ) T ’(LPO/pf ) ) dy pf pU.so the percentage of
[2." Aly) dy I5" Aly) dy Py

volume above the surface is 100 (u> %.
Py

(b) For an iceberg, the percentage of volume above the surface is 100 (20280917 % ~ 11%.

(c) No. the water does not overflow. Let V; be the volume of the ice cube, and let V,, be the volume of the water
which results from the melting. Then by the formula derived in part (a), the volume of ice above the surface of
the water is [(p; — po) /ps]Vi. so the volume below the surface is Vi — [(ps — po) /ps]Vi = (po/ps)Vi
Now the mass of the ice cube is the same as the mass of the water which is created when it melts, namely
m=pVi=p;Vu = Vw = (po/pf)Vi. So when the ice cube melts, the volume of the resulting water is

the same as the underwater volume of the ice cube, and so the water does not overflow.

(d) y The figure shows the instant when the height of the exposed part of the
ball is y. Using the formula in Problem 5(a) with r = 0.4 and
/ 04 h = 0.8 — y. we see that the volume of the submerged part of the
y{—‘?\\ sphere is 17(0.8 — y)?[1.2 — (0.8 — y)], so its weight is
g * 1000g - 27s*(1.2 — s), where s = 0.8 — y. Then the work done to
08—y
| submerge the sphere is
[0 ®gl0ns*(1.2 - s)ds = g2 (?8(1 25% — §°) ds
= g1000[0.4° — 15%]0® = g21%07(0.2048 — 0.1024)
= 9.8 1000 71(0.1024) & 1.05 x 107 joules
. . . dv . .
7. We are given that the rate of change of the volume of water is i —kA(x), where k is some positive constant
and A(z) is the area of the surface when the water has depth . Now we are concerned with the rate of change of
d av d
the depth of the water with respect to time. that is. d— But by the Chain Rule, — V_ —V 9T 5o the first equation
dt dt  dxodt’
. dV dx .
can be written T d —kA(z) (%). Also, we know that the total volume of water up to a depth z is
x



10.

. A typical sphere of radius r is shown in the figure. We wish to maximize the
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V(z) = [ A(s)ds, where A(s) is the area of a cross-section of the water at a depth s. Differentiating this
equation with respect to z, we get dV/dz = A(x). Substituting this into equation *, we get

A(z)(dz/dt) = —kA(z) = dz/dt = —k. a constant.

shaded volume V', which can be thought of as the volume of a hemisphere of

radius v minus the volume of the spherical cap with height h = 1 — /1 — 72

and radius 1.
V=3 4mr® —dr(1 - v1—72)[3(1) — (1 - VI=7%)] [by Problem 5(a)]
=372’ = (2-2VT =12 —1?) (2 + VT —12)]
:%w[2r3—2+(r2+2)\/1—7‘2]
2 2 2 2 2
)1 2 (PP4+2)(-n) — 1 | 6rVI=r2—r(r? +2) +2r(1—r?)
V= 3m|6r +“\/1—ﬁr2 +V1-—r2(2r) 3T i

<6r2m - 3r3) mr? (21 =72 — 1)
ig =
V1—r2

Vir)=0 & 2V1-72=r & 4-4r2=¢2 o =% o r:%%O.SQ.SinceV’(r)>0for

0<r< % and V'(r) < 0 for % <7 < 1. we know that V attains a maximum at r = %

o=

. We must find expressions for the areas A and B. and then set them equal and see what this says about the curve C.

If P = (a,2a?). then area A is just Jy (22 — 2%) dz = Iy @ dz = La®. To find area B. we use y as the variable

of integration. So we find the equation of the middle curve as a function of y:y=22> o z= y/2,

since we are concerned with the first quadrant only. We can express area B as

o2 2a? o2 a2 ) )
f02 {\/y/2 - C(y)] dy = [%(y/2)3/2]0 - f02 Cly)dy = 3a® - f02 C(y) dy. where C(y) is the function

9

with graph C. Setting A = B, we get 1a® = §a3 - f2a Cly)dy & f02a2 C(y) dy = a®. Now we

0

differentiate this equation with respect to a using the Chain Rule and the Fundamental Theorem:

C(2a2)(4a) =3 = Cy) = 3 \/y/2. where y = 2a2. Now we can solve for vz=3/y2 =

= 2(y/2) = y =252

We want to find the volume of that part of the sphere which is below the surface m
of the water. As we can see from the diagram, this region is a cap of a sphere ‘ y

with radius 7 and height » + d. If we can find an expression for d in terms of A,

7 and 6, then we can determine the volume of the region [see Problem 5(a)],

>

and then differentiate with respect to r to find the maximum. We see that

r r
inf = —_ h—d=
st h—d < sin 6

< d=h—rcsch.
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Now we can use the formula from Problem 5(a) to find the volume of water displaced:
V=1rh®(3r — h) = $n(r + d)?Br—(r+d)]=ir(r+h- rcsc0)?(2r — b+ resch)
=Z[r(1 —csch) + Rh)?[r(2 + csc) — h)

Now we differentiate with respect to r:

dV/dr =% ([r(1 — cscf) + h)%(2 + csc ) + 2[r(1 — csc ) + h](1 — csc8)[r(2 + cscb) — h])
= Z[r(1 — csc) + hJ([r(1 — cscf) + h](2+ csc ) +2(1 — cscO)[r(2 + csch) — hj)
=Z[r(1 —csc) +h|(3(2 + csc)(1 — csc0)r + [(2 + csch) — 2(1 — cscB)]h)

= Z{r(1 —cscO) +h][3(2 + cscO)(1 — csc0)r + 3hcsc ]

h hcscf h
This is O wh = ——— and wh = . i - )=
is is O when r csc9—1dn when r (500 + 2)(csc0 1) NowsmceV(CSCO_l) 0
(the first factor vanishes: this corresponds to d = —r), the maximum volume of water is displaced when

_ hcsc@
" (cscO — 1)(csch +2)

. (Our intuition tells us that a maximum value does exist, and it must occur at a critical

number.) Multiplying numerator and denominator by sin? 6, we get an alternative form of the answer:

_ hsin 6
" sin@ + cos 20’

11. (a) Stacking disks along the y-axis givesus V' = fo m [f( y)]? d

dv  dv dh 2dh
(b) Using the Chain Rule. —> = - - = = m[f(h)]
2 dh dh 2 —
(©) kAVE = nf(h)]* 2. Set T2 = C: m{f ()] C=kAVR = [f(h) = \/_ -

f(h) =1/ % Y4 thatis, f(y) = 1/ % y*/*. The advantage of having % = C is that the markings on the

container are equally spaced.

12. (a) We first use the cylindrical shell method to express the volume V in terms of h, 7, and w:

r r 2,2 r 2.3
V:/ 27rmyda::/ 2wx{h+ﬁi] dm:27r/ (hx+w z )dm
0 Jo 29 0 29

hx®  w?z*]” hr? Wit 2 rwrt
=2 |— =27 | — =7h
w[ ) + 89 ]0 7{ B + 8g whr® + g

V- (mu r )/(49) 4gV — muzr"'

h =
wr? 4mgr?
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w2=ﬂ = w:2ng‘
rd /T2

(b) The surface touches the bottom when h = (0 = 49V —qw*ri =0 =

To spill over the top, y(r) > L <

L<h w?r? _ 4gV — it W22 49V _ nwir?  Wip?
<ht 29~ 4ngr? 29 4mgr?  dmgr? 29
AN S N A N
2 4g 29 wr 4g
2,2 2y, _ 4 L-v
T sr- v _mrl-Vv s Wwi> L So for spillage. the angular speed should
4g 2 wr? mrd
2\/g(rr2L - V)
b
e w > 2 /n
W2 .12
() (i) Herewehaver =2 L =7 h=7-5=2 Whenz = 1.y =7—4 = 3. Therefore,3 = 2+ 232
w? ., m-82. 9% 2
1= 53 = w'=64 = w=8nd/s. V=n(2)(2) +T = 87 + 87 = 167 ft2.
2 52
(i) Atthewall,z =250y =2+ —2—322 = 6 and the surface is 7 — 6 = 1 ft below the top of the tank.

13. We assume that P lies in the region of positive z. Since y = z2 is an odd
function. this assumption will not affect the result of the calculation. Let
P = (a,a®). The slope of the tangent to the curve y =z at Pis 3a®. and so
the equation of the tangent is y — a® = 3a?(z — a) & y=3a’c— 245
We solve this simultaneously with y = z° to find the other point of intersection:

2’ =3’z -2 & (z-a)(z+ 2a) = 0.50 Q = (—2a, —-8a%) is

P(a,d’)

the other point of intersection. The equation of the tangent at Q is
—2a,—8a*
y—(=8a%) =12a[z — (~2a)] & y=12a2z + 164°. By symmetry, Q(~2a,~8a’)
this tangent will intersect the curve again at ¥ = —2(—2a) = 4a. The curve lies above the first tangent, and below

the second. so we are looking for a relationship between A = L% [2° = (3a%z — 2a%)] dz and

B= ff;a [(12a%z + 16a%) — 2] dz. We calculate 4 = [12* — 3a%2® + 2a3m]i2a =3q" - (—6a*) = 2 gt

B

4a

—2a

and B = [60,22:2 +16a%z — %:c‘l] = 96a* — (—12a4) = 108a*. We see that B = 164 = 24 A. This is
because our calculation of area B was essentially the same as that of area A. with ¢ replaced by —2a, so if we

replace a with —2a in our expression for A. we get 21(—2a)* = 108a* = B.

A

14. (a) Place the round flat tortilla on an zy-coordinate system as

(x. \/16_; .F)
shown in the first figure. An equation of the circle is |

©® + y* = 4% and the height of a cross-section is ‘|, |height =
—4 LI AR b N T

216 — z2.




554 O CHAPTER6 PROBLEMS PLUS

Now look at a cross-section with central angle 6 as shownin /77777

the second figure (r is the radius of the circular cylinder).

The filled area A(z) is equal to the area A; (x) of the sector

minus the area Ax(z) of the triangle. =
arc length

=2/16- ¢
A(z) = A1 (z) — A2(2)
= %7‘291 — %r2 sin 0, [area formulas from trigonometry]
= 1r(rf,) — 4r sin(i) larclength s = 70, = 0z =s/7]

_ r2
—1r.2 16—x2—%rzsin<z—————vlim> [s =21/16 — 22 ]
=r\16 — 22 — %r2 sin(%\/ 16—w2> (%)

Note that the central angle 6 will be small near the ends of the tortilla; that is, when |z| &~ 4. But near the
center of the tortilla (when || = 0). the central angle 6, may exceed 180°. Thus. the sine of 6, will be negative
and the second term in () will be positive (actually adding area to the area of the sector). The volume of the

taco can be found by integrating the cross-sectional areas from z = —4to z = 4. Thus,

Vie) = /_44 Az) de = /_44 ['r V16 =22 — Lr? sin(%ﬂ)} dx

(b) To find the value of r that maximizes the volume of the taco, we can define the function

vy - [ [visa - pa(RViE )

—4

The third figure shows a graph of y = V/(r) and y = V' (r). The maximum volume of about 52.94 occurs
when r &~ 2.2912.






